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Abstract
Human social interactions require understanding and predict-
ing other people’s behavior. A growing body of work has
found that these inferences are structured around an assump-
tion that agents act rationally and efficiently in space. While
powerful, this view treats action understanding in a vacuum,
ignoring that much social inference happens in the context
of familiar, hierarchically structured events (e.g.: buying gro-
ceries, ordering in a restaurant). We propose that social and
world knowledge is critical for efficiently interpreting behavior
and test this idea through a simple block-building paradigm,
where participants infer an agent’s sub-task (study 1a), next
action (study 1b), and higher-level goal (study 1c), from very
sparse observations. We compare these inferences against a
Bayesian model of goal inference that exploits task structure
to interpret agents’ actions. This model fit participant judg-
ments with high quantitative accuracy, highlighting how world
knowledge may help support social inferences in a rich and
powerful way.
Keywords: Computational modeling; Social cognition

Introduction
Many of the hallmarks of uniquely-human cognition—
language, social learning, and moral reasoning, to name a
few—are possible thanks to our ability to represent others
as having mental states that cause their behavior, a Theory of
Mind (Gopnik et al., 1997). Making sense of others’ behavior
in terms of the happenings of their minds enables us to deter-
mine what they are trying to accomplish (Baker et al., 2009),
what they intend to communicate (even when they’re ambigu-
ous; Jara-Ettinger & Rubio-Fernandez 2021), what they’re
likely to do next (Jara-Ettinger et al., 2020), and whether
their intentions are praiseworthy or condemnable (Young et
al., 2007).

While there is little doubt that representations of other peo-
ple’s mental states structure human social reasoning, ques-
tions remain about how we determine which mental states to
attribute based on how people act. In the last two decades,
one prominent proposal has emerged, which posits that hu-
mans understand each other by assuming that agents act to
maximize utilities—the difference between the costs that they
incur and the rewards they obtain (Gergely & Csibra, 2003;
Jara-Ettinger et al., 2016). Under this view, mental-state at-
tribution is a process of identifying combinations of beliefs
and desires under which the agent’s behavior would maxi-
mize utilities. Consistent with this, even young children and
infants rely on an expectation of utility maximization to un-
derstand other people’s goals (Gergely et al., 1995; Lucas et

al., 2014), infer what they know (Jara-Ettinger et al., 2017),
make sense of future action (Liu et al., 2017), and make so-
ciomoral evaluations (Kiley Hamlin et al., 2013). Moreover,
formal computational implementations of this idea, known
under the umbrella term of Bayesian Theory of Mind, reach
human-level performance in simple tasks of preference and
mental-state attribution (Baker et al., 2017; Jern et al., 2017).

Despite the broad success of this approach, questions re-
main about how such inferences might support social reason-
ing in more complex real-world situations, where both the
space of mental states and the space of possible goals can be
too large for current mental-state inference algorithms to be
tractable. In response to this puzzle, some researchers have
argued that BToM models provide only a computational-level
description that does not necessarily capture the true algorith-
mic implementation in the mind (Jara-Ettinger et al., 2016),
or that simpler satisficing models might be enough (Pöppel &
Kopp, 2018).

Here we propose a different potential solution to this ap-
proach. To illustrate our idea, imagine watching someone
throw a paper cup into the trashcan at a coffee shop. From
this simple action, you might infer that the person was previ-
ously sitting at a table drinking their coffee and is now ready
to leave, or that they work there and they are cleaning up trash
others left behind. From a Bayesian Theory of Mind perspec-
tive, such inferences might be supported by inferring that this
action is utility maximizing for agents that do not want the
coffee cup to remain in the coffee shop and believe that plac-
ing it into the trashcan will help get rid of it. With these infer-
ences in hand, we might infer that the agent’s desire applies
to other coffee cups in the shop (and is therefore cleaning
up) or no longer has any desires that would lead them to stay
in the coffee shop (and is therefore leaving). Alternatively,
however, we propose that we might have learned throughout
our life that people generally throw cups out when they are
performing a cleaning task, which is a sub-task carried out
by employees in coffee shops (which can be an intermediate
step in managing a coffee shop) and by patrons of the coffee
shop (where it is typically the last step they perform at coffee
shops).

Under this second approach, our inferences hinged on
knowing how different common events unfold, and recog-
nizing that the observed action is a step in a broader action
plan that people commonly take. Note that this second ap-



proach does not posit that Bayesian Theory of Mind is unnec-
essary. Quite the opposite. These high-level inferences about
what step an agent might be completing depend on a capac-
ity to process others’ behavior and identify their immediate
goals (in our example, throwing a paper cup to the trash can).
Nonetheless, this proposal helps constrain the types of infer-
ences that we may need to perform under a Bayesian analy-
sis of utility maximization. After identifying an immediate
goal through standard models, we may be able to then reason
about behavior at a higher level of abstraction, in terms of our
understanding of how common physical and social events un-
fold.

More specifically, we propose that a neglected component
of Theory of Mind lies in how we rely on knowledge about
the structure of how common events unfold, such as grocery
shopping, having a conversation, or cooking a meal. That is,
people may process body movements to identify immediate
goals, but then rely on knowledge of events to make sense
of the agent’s broader plan and predict what they might do
next. In this paper we present a simple computational inter-
pretation of this idea with two goals in mind. First, to show
how a relatively computationally simple system can support
rich inferences about others when reasoning about abstract
action plans. Second, to empirically evaluate people’s capac-
ity to quickly integrate knowledge about potentially novel ac-
tion plans to make sense of behavior. To achieve this, we
focused on a simple block-building paradigm, where partici-
pants watched simple videos of an agent completing a single
goal and were then asked to infer the agent’s broader goals
and future actions, given some knowledge of task structure.

Computational framework
At a high level, we model scenarios in which an observer
watches an agent performing a sequence of actions, and must
reason about that agent’s goals, sub-goals, or future actions.
However, we are particularly interested in cases where the
observable action data are very sparse, and the observer must
leverage information about potential action plans to put the
observations in context and make coherent inferences. To this
end, we model scenarios in which an agent is following a set
of instructions to build a structure out of blocks (Figure 1).
The observer’s background knowledge consists of a) the set
of blocks available in the kit (capturing the physical context,
which specifies the space of actions that agents can take), b)
a set of “target” structures that can be built using the blocks
(capturing the space of high-level plans that we expect people
to typically pursue), and c) a set of step-by-step instructions
for building each target structure (capturing our knowledge
of how these high-level plans unfold). Each target structure
is modular, consisting of several components that can be built
in any order before the final structure is put together.

The observer watches the agent perform a single action
out of context (picking up a single block and placing it atop
another block, with no context indicating what other blocks
have already been used or what components have already

been built; Figure 1c). Depending on the task, the observer
may also be told which of the target structures the agent is
building. The observer must then infer either which com-
ponent of the structure the agent is working on (Study 1a),
which type of block the agent will need next (Study 1b),
or which of the target structures the agent is trying to build
(Study 1c).

Model
We model the observer’s responses as ideal Bayesian infer-
ence. In order to infer which component C the agent is build-
ing, given the target structure S and observed action a (Task
1a), we compute the posterior probability according to Bayes’
rule:

P(C|a,S) ∝ P(a|C,S)P(C|S) (1)

We compute the likelihood P(a|C,S) as the number of times
action a occurs in the instructions for component C, divided
by the total number of actions in the instructions for compo-
nent C. Participants are told that the agent is equally likely
to be at any point in the instructions, so the prior likelihood
P(C|S) is equal to the total number of actions in the instruc-
tions for component C divided by the total number of actions
in the instructions for structure S (across all components). We
use equation (1) to generate predictions for Study 1a.

To predict which block the agent will need next, we first
apply equation (1) to compute the probability that the agent
is working on each component of the model. Then, for each
component, we identify all possible next actions a′, given the
current action a, and compute, for each type of block b, the
fraction of all possible next actions which require a block of
type b, weighted by the posterior probability of that next ac-
tion. This yields the probability P(b|S,a) that the agent will
require block b next, given the agent’s current action and tar-
get structure, which we use to generate predictions for Study
1b.

To infer which structure the agent is building, we again
compute the posterior probability according to Bayes’ rule:

P(S|a) ∝ P(a|S)P(S) (2)

We assume a uniform prior for P(S) (i.e. that the agent is
equally likely to be working on any structure). To com-
pute the likelihood of action a given the target structure S,
we marginalize over possible components, i.e. P(a|S) =
∑C∈S P(a|C,S)P(C|S), where P(a|C,S) and P(C|S) are com-
puted as in equation (1). We use equation (2) to generate
predictions for Study 1c.

Experiments
We conducted three studies, corresponding to the three infer-
ence types described above. All studies and analyses were
pre-registered unless explicitly noted (osf.io/9ubqn).

Participants
For each study, we recruited 40 adult participants with US-
based IP addresses via Amazon Mechanical Turk. As per
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Figure 1: a) The set of blocks shown to participants. b) The three target structures participants are shown that can be all
built using the exact same set of blocks. c) Still frames from 4 of the short stimuli videos used in all studies. d) Example of
instructions shown for one of the target structures.

our preregistration, participants who failed one or more com-
prehension questions were excluded from the study, leaving
N=38 participants for Study 1a (mean age=38.9, SD=11.3;
n=2 exclusions), N=37 for Study 1b (mean age=37.7,
SD=11.1; n=3 exclusions), and N=37 for Study 1c (mean
age=35.1, SD=7.4; n=3 exclusions).

Stimuli

Participants were first shown a picture of a block-building kit
containing a fixed number of blocks of four different shapes
and colors (Fig. 1a), pictures of three different structures that
can be built from the kit (Fig. 1b), and pictographic instruc-
tions for building each structure (Fig. 1d). For trial stimuli,
we recorded 8 short video clips depicting an experimenter’s
hand placing one of the blocks from Fig. 1a on top of an-
other block (see Fig. 1c for examples). Videos were recorded
against a blank background, and were framed so as to make
the height of the bottom block ambiguous (thereby making
it unclear what had already been built prior to the action de-
picted in the clip, or which blocks had already been used).
The 8 clips corresponded to all 8 combinations of blocks that
occurred in at least one of the three instruction sets, excluding
the “green plate” (as it was always the very last block to be
used in each construction).

The three target structures were designed to achieve a mix
of frequencies with which the actions depicted in the clips

occurred. That is, within each structure, certain actions oc-
curred only on one component, and other actions occurred
on all components (possibly with varying frequencies). For
example, in Structure 1, only one of the three components
involves placing a blue on a yellow, and all three compo-
nents involve placing a red on a blue, but the second com-
ponent involves twice as many “red on blue” actions as the
first or third component. This mixture meant that participants
could rely on deductive inference for some trials (i.e.: those
for which the depicted action occurred in only one possible
component), but would have to rely on statistical reasoning
for others (those for which the depicted action occurred on
multiple components with different frequencies).

In Studies 1a and 1b, participants were told in each trial
which of the three structures the agent in the clip is building,
and then shown one of the 8 clips. Each trial corresponds
to a single video/target model pairing, yielding 16 total trials
(since some sequences do not occur in all three constructions-
for example, Structure 1 does not involve placing a red block
on a red block at any step, so there is no “red-on-red/Structure
1” trial). In Study 1c, participants are only shown the clip, and
must infer which of the three models the agent is building.
Study 1c therefore contains only 8 trials, one for each video
clip.



Procedure
Instructions were largely identical for all three studies: par-
ticipants were first shown the blocks, target structures, and
instruction sets, and then told that they will be watching short
video clips of someone building one of the structures. Af-
ter initial instructions, participants were given two chances to
pass a 4-question comprehension check, to ensure that they
both understood the instructions and could visually distin-
guish and identify the blocks depicted in the videos. Partic-
ipants who failed one or more questions on both tries were
excluded from the study.

Upon passing the comprehension check, participants were
then shown all 16 trials (for Studies 1a and 1b) or 8 trials (for
Study 1c) in a random order. In each trial of Study 1a, par-
ticipants were asked to guess which component of the target
structure (Leg 1, Leg 2, or Leg 3) the agent in the clip was
working on. Participants could view the instructions for each
component at any time by clicking a link to open the image in
a new window. Participants responded using three numerical
sliders, one for each component, ranging from 0 (definitely
NOT building) to 100 (definitely building).

In Study 1b, participants were shown the same stimuli as
in 1a, but were instead asked to guess which of the four types
of blocks the agent would most likely need next. Participants
responded using four numerical sliders, one for each type of
block, ranging from 0 (definitely WON’T need) to 100 (def-
initely WILL need). In Study 1c, participants were shown
only the video clips, and then asked to guess which of the
three target structures the agent in the clip was building. Par-
ticipants could view the instructions for each structure at any
time by clicking a link to open a full-page image in a new
window. Participants responded using three numerical sliders
ranging from 0 (definitely NOT building) to 100 (definitely
building).

Results
For each trial in each study, participants returned three (for
Studies 1a & 1c) or four (for Study 1b) numerical values rang-
ing from 0-100, indicating the participant’s estimated likeli-
hood of each possibility given the stimulus information. As
preregistered, for each participant and each trial, we normal-
ized the participant’s response to sum to 1, then averaged re-
sponses across participants within each trial. This yielded, for
each trial, the average estimated probability of each possible
response for that trial. We then compared these estimated
probabilities against the probabilities generated by our com-
putational model.

Figure 2 presents a scatter plot comparison between model
predictions and human data (2a) and a summary of correla-
tions and confidence intervals for each study (2b). Across all
three studies, model predictions were very highly and signif-
icantly correlated with participant responses (Study 1a: r =
.98, 95%CI(.97, .99); Study 1b: r = .91, 95%CI(.86, .94);
Study 1c: r = .96, 95%CI(.89, .98)). Although our pre-
registration did not include a plan to present an overall model

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

Hu
m

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

Study Inference Task r 95% CI

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

1a Sub-Step .98 (.97, .99)

1b Next action .91 (.86, .94)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

1c Goal Structure .96 (.89, .98)

a) Model predictions (all three studies)

b) Summary of results0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model

H
um

an

Study
Action Prediction

Step Inference

Task Inference

Combined results

Study
1a
1b
1c

Figure 2: Panel a) depicts a comparison of model predictions
against participant data, color-coded by study. Each point
represents one option probability in one trial, with model pre-
dictions on the x axis and aggregate human judgments on
the y axis. Shaded bands indicate 95% confidence intervals
around a linear regression. Panel b) depicts Pearson corre-
lations between model predictions and human data for each
study, along with 95% confidence intervals

evaluation across all tasks, we present one here for com-
pleteness. To achieve this, we z-scored participant judgments
and model predictions (to standardize all task judgments into
a common scale) and computed the overall correlation be-
tween model predictions and participants judgments using the
data from all tasks. This analysis revealed a correlation of
r = .94, 95%CI(.92, .96). Importantly, participant responses
closely tracked model predictions in both “obvious” trials,
where the observed action was consistent with only one pos-
sible answer, and in “mixed” trials, where the observed action
was consistent with multiple answers (possibly with different
probabilities). To better visualize this, Figure 3 shows an ex-
ample of a “mixed” trial from each study, where the observed
action is consistent with all possible answers, but with differ-
ent probabilities. The rightmost column depicts a comparison
between model predictions and average participant responses.
In all three examples, participants correctly identified both the
more probable answers and the less probable answers at rates
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Figure 3: Example of trial stimuli and results. Each row corresponds to one study. Middle column depicts an example stimulus
from each study. Third column depicts comparison of model predictions against average participant responses for each study

that closely tracked model predictions. This strongly suggests
that participants are utilizing the same structural and statisti-
cal information leveraged by our computational model.

The strongest discrepancy between human data and model
predictions occurred in Study 1b, where participants pre-
dicted which block the agent would need next. A closer ex-
amination of the data reveals a likely cause for this discrep-
ancy: in certain 1b trials, the observed action is consistent
with both an intermediate step of a component and a final step
of a component. For example, if the agent is currently work-
ing on Leg 2 of Structure 1, the observation “place blue block
on red” is consistent with both the third step of that compo-
nent and the final step of that component. In such cases, the
model considers both possibilities when predicting the next
action: if the observation corresponds to the final step in the
current component, then the next action will be the first step
in one of the two remaining components, or the final step of
the construction (attaching the green plate). A closer analy-
sis of the individual responses, however, suggests that only
about half of participants considered this possibility in these

ambiguous trials, while the other half only considered pos-
sible next steps within the same component. This oversight
appears to account for the larger discrepancy between human
data and model predictions in Study 1b, though the correla-
tions are still high and significant for that study.

Discussion
Theory of Mind (ToM)—the capacity to infer, represent,
and reason about the mental states of others (Gopnik et
al., 1997)—underlies many uniquely-human cognitive capac-
ities, including language (Jara-Ettinger & Rubio-Fernandez,
2021), social reasoning (Baker et al., 2009; Jara-Ettinger
et al., 2020), and moral reasoning (Kiley Hamlin et al.,
2013; Young et al., 2007). Understanding how we accom-
plish mental state inference is therefore crucial for under-
standing human cognition more generally. One of the most
prominent accounts to emerge in the past two decades posits
that humans understand each other through a lens of utility
maximization—that is, we expect others to choose actions
that maximize the difference between the costs that they incur



and the rewards they obtain (Gergely & Csibra, 2003; Jara-
Ettinger et al., 2016). Following this approach, a wealth of
research has shown that even children and infants rely on
expectations of utility maximization when reasoning about
and interpreting human behavior (Gergely et al., 1995; Jara-
Ettinger et al., 2017; Liu et al., 2017; Lucas et al., 2014). This
approach also lends itself to a computational implementation
leveraging Bayesian inference (Bayesian Theory of Mind),
and has yielded computational models that match human per-
formance in a range of simple mental inference tasks (Baker
et al., 2017; Jern et al., 2017).

However, in many real-world cases, the space of possible
mental states to consider, relative to the sparsity of available
data (i.e.: observed behavior) can lead to intractable compu-
tations under a Bayesian Theory of Mind approach. In this
project, we propose that in many such cases, observers rely
on detailed knowledge of the environment, and how com-
mon events frequently unfold within that environment. That
is, when observed behavior is sparse enough to be consistent
with a broad space of possible mental states, we propose that
people rely on knowledge of structured action plans to put
their observations into context and draw coherent inferences.
To this end, we proposed a computational model of the pro-
cess through which people integrate structured environmental
knowledge into their mental inferences, and tested this model
in three experiments using a simple block-building paradigm.

Our results provide converging support for our account:
across all three experimental tasks, participant responses
closely and consistently tracked the predictions of our com-
putational model. Furthermore, the model was able to repli-
cate human performance in both “obvious” tasks, where the
observed action was consistent with only one possible goal or
sub-goal, and more complex tasks, where the observed behav-
ior was consistent with multiple possibilities but with differ-
ent probabilities. This suggests that participants were able to
leverage structured knowledge of the environment and pos-
sible action plans to make coherent inferences about agent
goals and actions from very sparse behavioral data.

Our work leaves several open questions. First, our compu-
tational model assumed direct access to agent actions. This
is in line with standard models of Theory of Mind, where ac-
tions and choices are assumed to be directly observable (e.g.,
Baker et al., 2017; Jara-Ettinger et al., 2020; Jern et al., 2017).
In the real world, however, actions are discrete categories that
are not observable, and must be inferred based on people’s
continuous body movements. Interestingly, some recent re-
search suggests that people can infer actions and goals from
body movements using Bayesian inference structured around
an expectation that agents move efficiently in space (Qian et
al., 2021). This further supports the idea that Bayesian in-
ference over a generative model where agents act rationally
and efficiently may form the back-bone of action understand-
ing, which is then transformed to richer inferences based on
our social and world knowledge. In future work we hope to
extend our model to capture a full pipeline from limb move-

ments to hierarchical task inferences that enables us to test
our account in a more holistic way.

Relatedly, our model and experiments assumed knowledge
about the types of tasks that agents generally pursue, and the
steps involved in each task. While this assumption may be
reasonable in many cases, it also raises the question of how
people learn this word and social knowledge in the first place.
This suggests that people may have an additional capacity for
learning event structures from observable actions. To illus-
trate this idea, imagine visiting a foreign country and walk-
ing into a restaurant with unfamiliar customs. If you saw an-
other person walk in and head directly towards an interactive
screen on the wall, you might initially infer that this must
be the first step in ordering food. However, if you next saw
another two people walk up to the counter, you might then
start to believe that this restaurant has two possible methods
for ordering food, or that there are two different steps to be
completed, where the order does not matter. Recent work
has indeed found that people can quickly infer potential task
structures from watching a small set of agents navigate an en-
vironment (Velez-Ginorio et al., 2017), suggesting that this
capacity may underlie the task learning that later enables us
to draw rich and powerful inferences about the social world.

Finally, another limitation of our work is that we focused
on a novel task setting that is not representative of the com-
mon events where people engage in action understanding.
This enabled us to have a paradigm where we had precise
control over what information was available to participants
and to our model. In future work, however, we hope to ex-
tend our model to more realistic events that are representative
of social inferences in the real world.

To conclude, we investigated how humans can infer goals
and predict actions from very sparse behavioral data by lever-
aging structural knowledge about the environment and fre-
quent action sequences. We proposed a simple computa-
tional account of this inference and tested it in a simple block-
building paradigm. The results demonstrate that people lever-
age knowledge about potential action sequences in a process
very similar to how the model utilizes the same information.
This constitutes an important first step towards a broader un-
derstanding of human mental inference in complex real-world
environments.
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