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Agenda setting and The Emperor’s New Clothes: people infer that letting powerful 
agents make their opinion known early can trigger information cascades and 

pluralistic ignorance 

Emory Richardson (emory.richardson@yale.edu), Isaac Davis (isaac.davis@yale.edu),  
& Frank Keil (frank.keil@yale.edu) 

Abstract 

Consensus-based social learning strategies often 
outcompete other strategies in evolutionary models. But 
while formal proofs suggest that consensus’ reliability is 
compromised when individual judgments are not 
independent, this makes for a notoriously implausible 
assumption in the biological world: the people we learn 
from are constantly learning from each other as well. 
How do we avoid being misled by consensus? We 
present two experiments and a computational model 
examining commonsense reasoning about how people’s 
public and private judgments are influenced by the 
consensus and social status of those around them. 
Results suggest that while people realize that these two 
factors can cause others’ public and private judgments 
to diverge, their own trust in public consensus depends 
on how accurately they believe it reflects their 
informants’ true beliefs. 

Keywords: collective behavior, agenda-setting, information 

Introduction 
Imagine a five-person engineering team needing to decide 

which of two model airplane designs would fly the best in a 
contest. Each teammate first evaluates the airplanes 
privately and then, one-by-one, announces their vote. This 
means that only the first speaker votes without knowing 
anyone else’s vote, and knowing earlier speakers’ votes 
could change later speakers’ public votes — and their 
private beliefs — for better or for worse. Moreover, it may 
not affect them in the same way, and might not affect them 
at all. As a truth-seeking fifth speaker, you might benefit 
from adjusting your confidence in your own answer after 
seeing your teammates’ votes — but how could you 
distinguish the signal from the noise?  

The inference problem you face is trickier than it is for 
earlier speakers: in order to weigh your own judgment 
against the previous speakers’, you’ll also need to evaluate 
speaker one’s influence on two, their joint influence on 
speaker three, and so on. But it’s not a problem easily 
dismissed as an artifact of an unusual voting process: many 
social contexts involve some form of sequential belief-
updating at micro- and macro-scales, from turn-taking in 
conversation and parliamentary voting to viral tweets and 
the influence of yesterday’s trades on today’s stock prices. 
And it’s a problem with teeth: your decision to trust or 
distrust that chain of influences not only affects you, but the 
downstream observers influenced by your decision, who 

may later influence you in turn. Socially transmitted 
information can be useful — cumulative culture would be 
impossible without it — but it can also lead to catastrophic 
information cascades (Boyd & Richerson, 1995; Raafat et 
al., 2009). So how do we learn from social information 
without being misled by it? Here, we focus on 
commonsense reasoning about how public and private 
judgments are influenced by social favor (the desire to align 
oneself with or against an individual or group) as well as 
information cascades (herd behavior by rational agents 
exposed to sequential decision-making processes). We 
examine this reasoning using human data from two 
experiments and a computational model. 

Here’s the gist of our argument. Large literatures 
demonstrate that stronger consensus can put dissenters 
under greater pressure to conform; and that social power 
(i.e., dominance, prestige) can have a similar influence 
(Raafat et al., 2009; Kameda et al., 2022; Morgan et al., 
2012; Pink et al., 2021; Jiménez & Mesoudi, 2019). In both 
cases, this pressure can include epistemic motivations, but it 
can also come from simply wanting to align oneself with an 
individual or group — a desire for social favor, even against 
one’s better judgment. But these pressures aren’t abstruse 
discoveries of 20th century academic psychology. They’re 
part of the commonsense psychology adults use to interpret 
each others’ behavior (Gerstenberg & Tenenbaum, 2017; 
Baker et al., 2017). Our suggestion is that commonsense 
reasoning about how they play out in sequential updating 
processes can make people more vigilant to the potential for 
information cascades. But existing evidence of people’s 
vigilance in sequential updating scenarios is mixed. We 
suggest that this is not because people are insensitive to the 
potential for information cascades. Instead, we’ll argue 
below that understanding people’s reliance on socially-
transmitted information requires looking closely at how they 
expect it to affect other people’s beliefs.  

(In)sensitivity to information cascades in sequential-
updating. Learning from Bob lets Alice avoid the costs of 
learning alone; but she also risks inheriting his errors. And 
the errors may not even be his. Bob may have learned from 
Carol, who learned from David, and so on. In other words, 
social learning allows errors to cascade through long 
transmission chains as well as knowledge. In some contexts 
(e.g., hearsay), the risks of relying on second- and third-
hand information seem intuitively obvious (Altay, Claidière, 
& Mercier, 2020). But less intuitively, a few relatively mild 
assumptions make deferring rational in some contexts. 
Namely: if Alice assumes Bob’s actions reflect the evidence 
available to him, then even a relatively small consensus may 
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provide her with sufficient evidence-of-evidence to override 
whatever her private evidence suggests. And evidence of 
evidence is evidence (Feldman, 2014; Dorst, 2022). For 
instance, suppose that given a binary choice, her private 
evidence suggests Bobcat Bite makes a better burger than 
Louis’ Lunch. But she sees that Bob and Carol have chosen 
Louis’ Lunch; if she assumes that these decisions reflect 
their (also binary) evidence, then her evidence consists of 
two votes for Louis’  (Bob and Carol) and one for Bobcat 
(her). Being a rational agent, she changes her mind and goes 
to Louis’. The counter-intuitive implication noted in two 
seminal papers (Banerjee, 1992; Bikhchandani, Hirshleifer, 
& Welch, 1992) is that a relatively small number of votes 
are sufficient to ensure that every subsequent voter will face 
the same decision as Alice — but since they would conform 
regardless of their private evidence, their public decisions 
are, paradoxically, no longer informative to later voters. 
Rational deference allows the initial votes to cascade 
through a chain.  

Given the theoretical importance of epistemic vigilance in 
social learning to theories of biological and cultural 
evolution, one might expect learners to be sensitive to the 
risks of information cascades, despite the counter-
intuitiveness of the implication that “a rational Alice should 
always defer”. But evidence from the several existing 
studies is mixed (A8derson & Holt, 1997; Whalen, Griffiths, 
& Buchsbaum, 2017; Xie & Hayes, 2022). Participants in 
these studies are presented with an urn mostly containing 
red balls or mostly blue. After privately sampling a ball 
from the urn, each informant either announces their 
inference publicly to the participant and remaining 
informants (potentially influencing their judgments), or 
privately tells the participant which color they believe 
predominates (ensuring each informant’s judgment is 
independent). When every informant infers the same color, 
people were just as willing to defer to the unanimous 
consensus in the publicly announced sequence as the private 
sequence (Xie & Hayes, 2022). Moreover, even when 
experimenters showed participants both sequences and 
asked them to explain whether or not one would be more 
informative than the other, participants defended each in 
approximately equal proportions (~35-40%, with 25% 
indifferent). These findings are consistent with earlier work 
(Whalen, Griffiths, & Buchsbaum, 2018) in which 
participants’ skepticism was only piqued if (A) one of three 
informants dissented or (B) all three informants jointly 
sampled a single ball to make their judgments instead of 
each sampling their own. 

Why aren’t people more skeptical of consensus when 
their informants could have been influenced by hearing each 
other’s decisions? Like others (Xie & Hayes, 2022; Whalen, 
Griffiths, & Buchsbaum, 2018; Laan, Madirolas, & de 
Polavieja, 2017; Dietrich & Spiekermann, 2013), we think 
it’s noteworthy that our informants’ judgments are rarely 
independent in the real world. People are constantly 
observing each others’ decisions, and allowing them to do 
so often makes consensus more reliable instead of less 
reliable (Kao et al., 2014; Barnett, 2019; Pilditch, Hahn, 

Fenton, Lagnado, 2020; Toyokawa, Whalen,and Laland, 
2019). Moreover, they often rely less on others’ judgments 
than models imply is optimal, and when they do defer, 
they’re selective about who they trust and why (Mannes, 
2009). So in real world contexts, one can’t disregard 
consensus simply because informants might have influenced 
each other. One has to consider whether they were 
influenced, and whether that influence would make 
consensus more reliable or less. The balls-and-urn task 
guarantees that allowing informants to observe each others’ 
decisions can only make consensus less reliable — but it 
may not be the kind of context in which people would be 
most vigilant to the risks for information cascades.  

Other contexts may make people more vigilant. For 
instance, people are mindful of alliance-based biases in 
testimony. If Jack endorses Jill, his endorsement seems less 
informative if Jack and Jill are close friends than if they 
dislike each other; and vice-versa if Jack disparages her. 
Even children make this inference (Liberman & Shaw, 
2020), and by adulthood we use it to reason about the 
evidential value of consensus: if one of the three 
eyewitnesses testifying about Jill’s alibi as a suspect in a 
robbery is her friend Jack, his testimony only counts 
towards consensus if he contradicts her alibi, not if he 
endorses it (Mercier & Miton, 2019). You may not even 
expect Jack believe his own testimony; it simply reflects his 
desire to maintain a relationship with Jill. A similar kind of 
reasoning may help explain why people so easily dismiss 
the beliefs of millions of political opponents (Oktar & 
Lombrozo, 2022): if someone only acquired a belief after 
hearing it espoused by their party leaders, it’s easy to 
dismiss their belief as dogma. 

We suggest that understanding people’s reliance on 
socially-transmitted information requires looking closely at 
both the epistemic and social motivations other people have 
for accepting or rejecting it. Here, we use the engineering-
team scenario introduced earlier to ask people to reason 
about how much influence early speakers’ public “votes” 
have on subsequent speakers’ public votes and their private 
beliefs. Participants are told that initially, four teammates 
privately believe the blue airplane design is best, and one 
privately believes the yellow design is best (Figure 1); but, 
the contest organizers ask them to go around from left-to-
right, meaning the yellow voter announces their vote 
(Yellow) first. Critically, we manipulate participants’ 
perceptions about the speakers’ social motivations by 
introducing the first speaker as “very popular”, or omitting 
mention of their social status.  

In Experiment 1, participants first rate which design the 
second speaker is relatively more likely to vote for after 
hearing the first speaker’s vote, and which design they are 
relatively more confident in privately. We then ask 
participants to make the same inferences for each 
subsequent speaker, assuming their previous judgment was 
correct. For instance, if they expect speaker two to vote 
yellow, we ask them what speaker three will publicly vote 
and privately believe after hearing speakers one and two 
vote yellow.  Experiment 2 is similar, but participants are 
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not shown the speakers’ initial beliefs. Instead, we show 
them that following the first speaker’s yellow vote, each 
subsequent speaker also voted yellow. Participants are then 
asked which airplane they themselves believed was best.  

Computational Framework 
Our computational framework seeks to capture 

participants’ intuitions about the public votes and private 
beliefs of agents in a sequential voting task. We encode 
these intuitions into a generative model, and posit that 
participants can invert this generative model to 
simultaneously predict agents’ public votes and private 
beliefs throughout the voting sequence.  

Generative Model 
Our generative model posits that each agent’s vote 

reflects a mixture of their private beliefs about each option, 
as well as their desire to gain the social favor of other agents 
by publicly agreeing with them. The first component- the 
agent’s private belief- is updated throughout the sequence as 
the agent observes how previous agents have voted. Each 
agent starts with an initial private belief, represented as a 
pair of probabilities [A0

n , B0
n ], respectively denoting agent 

n’s initial degree of belief that each option A is correct. As 
agents 1 through n − 1 reveal their public votes, agent n 
updates their own private belief through a modified form of 
the social learning rule in Toyokawa et al (2019). Formally, 
let V−A

n denote the total number of votes for option A 
among agents 1 through n − 1, and similarly for V−B

n. We 
define agent n’s updated belief in option A to be 

  (1) 

and similarly for B. The parameter wsel f > 0 denotes the 
agent’s “self-weight,” which captures how the agent weighs 
their own initial belief relative to the public opinions of 
other agents. If wsel f > 1, then the agent treats their own 
initial opinion as if it counts for “more votes” than each 
other agent’s opinion. The “data conformity” parameter θd 
captures the degree to which the agent’s beliefs will 
conform with a consensus: θd > 0 entails a “conformist” 
agent (i.e.: be more inclined to agree with the option that has 
the most votes). If θ > 1, then the influence of a consensus 
on the agent’s beliefs will increase superlinearly with the 
number of agents in the consensus (i.e.: increasing marginal 
gains). 

The second factor that influences an agent’s vote is social 
favor. Intuitively, we treat this term similarly to the belief 
update rule in equation 1. The key difference is that each 
previous agent’s vote is weighted by that agent’s “social 
power” pk. For example, if agent k is especially popular or 
influential, then k will have a higher social power value than 
the other agents. Formally, let P−A

n = ∑k<n I[Votek = A] ∗ pk, 
i.e.: the weighted sum of votes for agents 1 through n − 1, 

weighted by the social power of each agent. We define the 
social influence of votes 1 through n − 1 on agent n as: and 
similarly for influenceB

n. The parameter θs is the agent’s 
“social conformity,” which issimilar to the “data 
conformity” parameter θD, but captures the degree to which 
the agent is influenced by the social power associated with 
previous votes. 

Given these two update rules, we assume that the 
probability that agent n will vote for option A is a weighted 
sum of agent n’s private belief in A (beliefn

A) and the social 
influence for option A on agent n (influenceA

n ), i.e.:  

       (3) 

The weight parameter wacc captures the degree to which 
agent n’s vote is motivated by accuracy (i.e.: reflects their 
private belief in option A) versus social favor (i.e.: reflects a 
desire to align their public opinion with the set of agents 
voting for A). Each agent is thus defined by the five 
parameters wsel f , θd , θs , wacc , and p. For the purpose of our 
initial experiments, we assume that all agents have equal 
values for the first four parameters, but that social power 
may vary between agents. 

Inference and Prediction 
Given each agent’s parameter values for each agent 

(denoted Θ) and initial belief (denoted β), we can use 
equations (1)-(3) to probabilistically generate a sequence of 
votes and beliefs by iterating the model forward: In step k, 
given votes V1,…,Vk-1, we compute agent k’s updated 
beliefs, as well as the social influence on k from previous 
votes, then sample agent k’s vote according to equation (3). 
This defines a probability distribution over vote sequences 
V ̄N and belief sequences B ̄N , i.e.: P(V ̄N , B ̄N |Θ, β). In 
Experiment 1, participants produce this exact sequence of 
judgments: they are first shown each agent’s initial belief in 
each option, then they sequentially predict each agent’s 
degree of belief in each option, and the predict that agent’s 
vote. We then implement a Bayesian parameter estimation 
procedure (see next section for details) to infer the set of 
parameter values Θ that best explain each participant’s 
judgments.  

Parameter Estimation 
In Experiment 1, each participant produces a sequence of 

vote probabilities v2,...,v5 and degrees of belief b2,...,b5 in 
each option. To fit the model parameters to participant data, 
we implemented a Hierarchical Bayesian estimation 
procedure which simultaneously estimates parameter values 
Θ j for each individual participant, as well as a group-level 
distribution P(Θ|α) over parameter values. This group-level 
distribution is defined by hyper-parameter α, which is drawn 
from a prior distribution P(α). We can then compute the 
joint posterior distribution over Θ ̄ (the set of parameter 
values for each participant) and α (the global hyper-
parameters) as 

a binary choice, her private evidence suggests Bobcat Bite
makes a better burger than Louis’ Lunch. But she sees that
Bob and Carol have chosen Louis’ Lunch; if she assumes that
these decisions reflect their (also binary) evidence, then her
evidence consists of two votes for Louis’ (Bob and Carol) and
one for Bobcat (her). Being a rational agent, she changes her
mind and goes to Louis’. The counter-intuitive implication
noted in two seminal papers (CITEBanerjee; CITEBikhchan-
dani) is that a relatively small number of votes are sufficient
to ensure that every subsequent voter will face the same de-
cision as Alice — but since they would conform regardless
of their private evidence, their public decisions are, paradoxi-
cally, no longer informative. Rational deference allows a few
informative votes to cascade through a chain.

Given the theoretical importance of epistemic vigilance in
social learning to theories of biological and cultural evolu-
tion, one might expect learners to be sensitive to the risks
of information cascades, despite the counter-intuitiveness of
the implication that “a rational Alice should always defer”.
But evidence from the several existing studies is mixed (An-
derson Holt, 1997; Whalen, Griffiths, Buchsbaum, 2017;
Xie Hayes, 2022). Participants in these studies are presented
with an urn mostly containing red balls or mostly blue. Af-
ter privately sampling a ball from the urn, each informant
either announces their inference publicly to the participant
and remaining informants (potentially influencing their judg-
ments), or privately tells the participant which color they be-
lieve predominates (ensuring each informant’s judgment is
independent). When every informant infers the same color,
people were just as willing to defer to the unanimous con-
sensus in the publicly announced sequence as the private se-
quence (Xie Hayes, 2022). Moreover, even when experi-
menters showed participants both sequences and asked them
to explain whether or not one would be more informative than
the other, participants defended each in approximately equal
proportions ( 35-40PERC, with 25PERC indifferent). These
findings are consistent with earlier work (Whalen, Griffiths,
Buchsbaum, 2017) in which participants’ skepticism was
only piqued if (A) one of three informants dissented or (B)
all three informants jointly sampled a single ball to make their
judgments instead of each sampling their own.

Why aren’t people more skeptical of consensus when
their informants could have been influenced by hearing each
other’s decisions? Consider two relevant factors. First, the
potential for influence doesn’t mean the informants were in-
fluenced. People often rely less on others’ judgments than
models imply is optimal, and they’re selective about who they
trust and why (CITE). Participants may have assumed that
even if informants were influenced, it wouldn’t have been
enough to change their public decisions. And second, in-
formational dependencies between informants don’t always
make consensus less reliable in the real world — under cer-
tain conditions, they can make it more reliable (CITEkao;
CITEbarnett; CITEpilditch2020; Toyokawa, Whalen,and La-
land, 2019). Why does this matter? Like others (Xie Hayes,

2022; Whalen, Griffiths, and Buchsbaum, 2018; CITElaan;
CITEkao; CITEdietrich), we think it’s noteworthy that truly
independent evidence is as rare for humans as it is for every
other species in the biological world. For social learning to
be adaptive, learners have to be vigilant about who they trust
and when. But the balls-and-urn task might not be the kind of
context in which people would be most vigilant.

Computational framework
Our computational framework seeks to capture participants’
intuitions about the public votes and private beliefs of agents
in a sequential voting task. We encode these intuitions into a
generative model, and posit that participants can invert this
generative model to simultaneously predict agents’ public
votes and private beliefs throughout the voting sequence.

Generative model
Our generative model posits that each agent’s vote reflects a
mixture of their private beliefs about each option, as well as
their desire to gain the social favor of other agents by pub-
licly agreeing with their opinions. The first component- the
agent’s private belief- is updated throughout the sequence as
the agent observes how previous agents have voted. Prior to
voting, each agent has an initial private belief, represented as
a pair of probabilities [A0

n,B0
n], where A0

n denotes agent n’s ini-
tial degree of belief that option A is correct, and similarly for
B0

n. As agents 1 through n�1 reveal their public votes, agent
n updates their own private belief through a form of social
learning.

We use a modified version of the social learning rule from
Toyokawa et al (2019), which incorporates both the agent’s
initial beliefs as well as the votes of previous agents. For-
mally, let V A

�n = Âk<n 1[Votek = A] (i.e.: the total number of
votes for option A among agents 1 through n�1), and simi-
larly for V B

�n. We define agent n’s updated belief in option A
to be

belie f A
n =

wsel f ⇤A0
n +(.1+V A

�n)
qd

wsel f ⇤A0
n +(.1+V A

�n)qd +wsel f ⇤B0
n +(.1+V B

�n)qd

(1)
and similarly for belie f B

n . The parameter wsel f > 0 denotes
the agent’s “self-weight:” intuitively, this captures how the
agent weighs their own initial belief relative to the public
opinions of other agents. If wsel f > 1, then the agent treats
their own initial opinion as if it counts for “more votes” than
each other agent’s opinion. The “data conformity” parameter
qd captures the degree to which the agent’s beliefs will con-
form with a consensus: qd > 0 corresponds to a “conformist”
agent (i.e.: be more inclined to agree with the option that has
the most votes). If q > 1, then the influence of a consensus on
the agent’s beliefs will increase superlinearly with the number
of agents in the consensus (i.e.: increasing marginal gains).

The second factor that influences an agent’s vote is social
favor. Intuitively, we treat this term similarly to the belief
update rule in equation 1. The key difference is that each pre-
vious agent’s vote is weighted by that agent’s “social power”

pk. For example, if agent k is especially popular or influ-
ential, that agent will have a higher social power value than
the other agents. Formally, let PA

�n = Âk<n I[Votek = A]⇤ pk,
i.e.: the weighted sum of votes for agents 1 through n� 1,
weighted by the social power of each agent. We define the
social influence of votes 1 through n�1 on agent n as:

in f luenceA
n =

(.1+PA
�n)

qs

(.1+PA
�n)qs +(.1+PB

�n)qs
(2)

and similarly for in f luenceB
n . The parameter qs is the agent’s

“social conformity.” This is functionally similar to the “data
conformity” parameter qd , but captures the degree to which
the agent is influenced by the social power associated with
previous votes.

Given these two update rules, we assume that the proba-
bility that agent n will vote for option A is a weighted sum of
agent n’s private belief in A (belie f A

n ) and the social influence
for option A on agent n (in f luenceA

n ), i.e.:

P(Voten =A) =wacc⇤belie f A
n +(1�wacc)⇤ in f luenceA

n (3)

The weight parameter wacc captures the degree to which agent
n’s vote is motivated by accuracy (i.e.: reflects their private
belief in option A) versus social favor (i.e.: reflects a desire to
align their public opinion with the set of agents voting for A).
Each agent is thus defined by the five parameters wsel f , qd ,
qs, wacc, and p. For the purpose of our initial experiments,
we assume that all agents have equal values for the first four
parameters, but that social power may vary between agents.

Inference and prediction
Given a set of parameter values for each agent (denoted Q),
as well as each agent’s initial belief (denoted b), we can use
equations (1)-(3) to probabalistically generate a sequence of
votes and beliefs by iterating the model forward: first, we
sample agent 1’s vote V1 from their initial beliefs alone (as
there are no other votes to influence their beliefs). Given
votes V1, . . . ,Vk, we compute agent k’s updated beliefs, as
well as the social influence on k from previous votes, then
sample agent k’s vote according to equation (3). This defines
a probability distribution over vote sequences V̄N and belief
sequences B̄N , i.e.: P(V̄N , B̄N |Q,b). In Experiment 1, par-
ticipants produce this exact sequence of judgments: they are
first shown each agent’s initial belief in each option, then they
sequentially predict each agent’s degree of belief in each op-
tion, and the predict that agent’s vote. We then implement
a Bayesian parameter estimation procedure (see next section
for details) to infer the set of parameter values Q that best
explain each participant’s judgments.

Parameter estimation
In Experiment 1, participants are shown the initial beliefs of
each of 5 agents, as well as the first agent’s vote. Partici-
pants are then asked to predict agent 2’s degree of belief in
each option, as well as the likelihood that agent 2 will vote

for each option. Agent 2 then votes according to the partici-
pant’s prediction, and the process is repeated for each subse-
quent agent. Thus, each participant produces a sequence of
vote probabilities v2, . . . ,v5 and degrees of belief b2, . . . ,b5 in
each option. To fit the model parameters to participant data,
we implemented a Hierarchical Bayesian estimation proce-
dure which simultaneously estimates parameter values Q j for
each individual participant, as well as a group-level distribu-
tion P(Q|a) over parameter values. This group-level distribu-
tion is defined by hyper-parameter a, which is drawn from a
prior distribution P(a). We can then compute the joint poste-
rior distribution over Q̄ (the set of parameter values for each
participant) and a (the global hyper-parameters) as

P(Q̄,a|D) µ P(D|Q̄,a)P(Q̄|a)P(a) (4)

We estimated this distribution via an MCMC sampling pro-
cedure iterated for 100,000 samples. Convergence was vali-
dated using a Gelman-Rubin statistic computed with 4 paral-
lel chains, using a threshold of 1.1. We then took MaP esti-
mates of Q j for each participant, as well as MaP estimates of
a for each parameter.

Experiments
Experiment 1
Results Each participant reported what they thought each
voter would say, using a sliding scale from “definitely vote for
blue” to “definitely vote for yellow,” and which kit each voter
privately believed was superior, using an equivalent sliding
scale from “definitely blue” to “definitely yellow.” Partici-
pants did this for each of four voters (as the first vote was
specified by the stimulus), producing a probability for each
vote v2, . . . ,v5 and corresponding degree of belief for each
vote b2, ,b5.

Our analysis of this data focused on two primary questions.
First, do participants expect later voters to be influenced by a
desire to gain the social favor of previous voters, in addition
to the voter’s own private beliefs? In the absence of this social
influence, participants should expect each voter’s private be-
liefs to align with their public vote. That is, participants who
do not expect social favor to matter should respond that the
likelihood a voter will vote for “yellow” is exactly equal to
the voter’s degree of belief that yellow is the correct answer.
Thus, we evaluated systematic differences between partici-
pant judgments about public votes and private beliefs.

As shown in Figure [], mean participant responses revealed
a significant gap between vote probability ratings and degree
of confidence ratings: in particular, participants reported that
the likelihood of each voter publicly voting for yellow (agree-
ing with the first voter) was higher than each voter’s private
degree of belief in yellow. This trend is consistent across
all 4 speakers and across both conditions. Furthermore, this
gap was substantially and significantly larger in the “popular”
condition than the “anonymous” condition. That is, when the
first speaker is described as having a disproportionate amount

pk. For example, if agent k is especially popular or influ-
ential, that agent will have a higher social power value than
the other agents. Formally, let PA

�n = Âk<n I[Votek = A]⇤ pk,
i.e.: the weighted sum of votes for agents 1 through n� 1,
weighted by the social power of each agent. We define the
social influence of votes 1 through n�1 on agent n as:

in f luenceA
n =

(.1+PA
�n)

qs

(.1+PA
�n)qs +(.1+PB

�n)qs
(2)

and similarly for in f luenceB
n . The parameter qs is the agent’s

“social conformity.” This is functionally similar to the “data
conformity” parameter qd , but captures the degree to which
the agent is influenced by the social power associated with
previous votes.

Given these two update rules, we assume that the proba-
bility that agent n will vote for option A is a weighted sum of
agent n’s private belief in A (belie f A

n ) and the social influence
for option A on agent n (in f luenceA

n ), i.e.:

P(Voten =A) =wacc⇤belie f A
n +(1�wacc)⇤ in f luenceA

n (3)

The weight parameter wacc captures the degree to which agent
n’s vote is motivated by accuracy (i.e.: reflects their private
belief in option A) versus social favor (i.e.: reflects a desire to
align their public opinion with the set of agents voting for A).
Each agent is thus defined by the five parameters wsel f , qd ,
qs, wacc, and p. For the purpose of our initial experiments,
we assume that all agents have equal values for the first four
parameters, but that social power may vary between agents.

Inference and prediction
Given a set of parameter values for each agent (denoted Q),
as well as each agent’s initial belief (denoted b), we can use
equations (1)-(3) to probabalistically generate a sequence of
votes and beliefs by iterating the model forward: first, we
sample agent 1’s vote V1 from their initial beliefs alone (as
there are no other votes to influence their beliefs). Given
votes V1, . . . ,Vk, we compute agent k’s updated beliefs, as
well as the social influence on k from previous votes, then
sample agent k’s vote according to equation (3). This defines
a probability distribution over vote sequences V̄N and belief
sequences B̄N , i.e.: P(V̄N , B̄N |Q,b). In Experiment 1, par-
ticipants produce this exact sequence of judgments: they are
first shown each agent’s initial belief in each option, then they
sequentially predict each agent’s degree of belief in each op-
tion, and the predict that agent’s vote. We then implement
a Bayesian parameter estimation procedure (see next section
for details) to infer the set of parameter values Q that best
explain each participant’s judgments.

Parameter estimation
In Experiment 1, participants are shown the initial beliefs of
each of 5 agents, as well as the first agent’s vote. Partici-
pants are then asked to predict agent 2’s degree of belief in
each option, as well as the likelihood that agent 2 will vote

for each option. Agent 2 then votes according to the partici-
pant’s prediction, and the process is repeated for each subse-
quent agent. Thus, each participant produces a sequence of
vote probabilities v2, . . . ,v5 and degrees of belief b2, . . . ,b5 in
each option. To fit the model parameters to participant data,
we implemented a Hierarchical Bayesian estimation proce-
dure which simultaneously estimates parameter values Q j for
each individual participant, as well as a group-level distribu-
tion P(Q|a) over parameter values. This group-level distribu-
tion is defined by hyper-parameter a, which is drawn from a
prior distribution P(a). We can then compute the joint poste-
rior distribution over Q̄ (the set of parameter values for each
participant) and a (the global hyper-parameters) as

P(Q̄,a|D) µ P(D|Q̄,a)P(Q̄|a)P(a) (4)

We estimated this distribution via an MCMC sampling pro-
cedure iterated for 100,000 samples. Convergence was vali-
dated using a Gelman-Rubin statistic computed with 4 paral-
lel chains, using a threshold of 1.1. We then took MaP esti-
mates of Q j for each participant, as well as MaP estimates of
a for each parameter.

Experiments
Experiment 1
Results Each participant reported what they thought each
voter would say, using a sliding scale from “definitely vote for
blue” to “definitely vote for yellow,” and which kit each voter
privately believed was superior, using an equivalent sliding
scale from “definitely blue” to “definitely yellow.” Partici-
pants did this for each of four voters (as the first vote was
specified by the stimulus), producing a probability for each
vote v2, . . . ,v5 and corresponding degree of belief for each
vote b2, ,b5.

Our analysis of this data focused on two primary questions.
First, do participants expect later voters to be influenced by a
desire to gain the social favor of previous voters, in addition
to the voter’s own private beliefs? In the absence of this social
influence, participants should expect each voter’s private be-
liefs to align with their public vote. That is, participants who
do not expect social favor to matter should respond that the
likelihood a voter will vote for “yellow” is exactly equal to
the voter’s degree of belief that yellow is the correct answer.
Thus, we evaluated systematic differences between partici-
pant judgments about public votes and private beliefs.

As shown in Figure [], mean participant responses revealed
a significant gap between vote probability ratings and degree
of confidence ratings: in particular, participants reported that
the likelihood of each voter publicly voting for yellow (agree-
ing with the first voter) was higher than each voter’s private
degree of belief in yellow. This trend is consistent across
all 4 speakers and across both conditions. Furthermore, this
gap was substantially and significantly larger in the “popular”
condition than the “anonymous” condition. That is, when the
first speaker is described as having a disproportionate amount
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We estimated this distribution via an MCMC sampling 

procedure iterated for 100,000 samples. Convergence was 
validated using a Gelman-Rubin statistic computed with 4 
parallel chains, using a threshold of 1.1. We then took MaP 
estimates of Θ j for each participant, as well as MaP 
estimates of α for each parameter. 

Experiment 1 
In Experiment 1, we presented mTurkers with the 

scenario above (color-coding the airplanes yellow or blue, to 
prevent participants from seeing the designs for 
themselves). We manipulated social favor by either 
describing the first speaker as “very popular” or omitting 
mention of status. 

Participants. We recruited n=118 mTurkers in one of two 
conditions (Popular or Anonymous). An additional 10 were 
screened out prior to participating for failing basic 
comprehension checks about the instructions; an additional 
2 were excluded after participating for failing an attention 
check and providing gibberish explanations. 

Procedure. Participants were introduced to a five-person 
team building a remote control airplane for a contest using 
one of two designs. The designs were presented in color-
coded (yellow or blue) boxes in order to prevent participants 
from evaluating them directly. They were told that the 
contest organizers asked each person to look in each box 
and think silently about which would be best for the contest 
(though “looking in the box” is probably unnecessary to 
ensure adults infer private knowledge, it makes the 
procedure more consistent with a procedure being used with 
children). A thought-bubble next to each person showed 
their private belief: one person privately believed the yellow 
plane was best, while the remaining four all believed the 
blue plane was best. Next, participants were told that the 
contest organizers asked the teammates to go around one-
by-one from left to right and say which kind of airplane they 
thought was best.  Then, they were told that (given the left-
to-right order), the first person to speak was the teammate 
who privately believed yellow, and they voted yellow. In the 
Anonymous condition, the teammate was left unnamed; but 
in the Popular condition, he was introduced as “Max”, and 
described as being very popular.  

Participants were then asked to infer (1) what the second 
speaker would say, after hearing Max say yellow, and (2) 
what the second speaker privately believed. On each 
subsequent trial, they were asked to assume their answers 
for the previous round were correct. For instance, if they 
answered that the second speaker would also say yellow, 
they were asked (1) what the third speaker would say after 
hearing Max and the second speaker say yellow, and what 
(2) what the third speaker would privately believe. 
Participants responded using a 20-point scale for all 
questions anchored at 1-“definitely blue” and 20-“definitely 
yellow”, and were asked to briefly explain their answer to 
the final decision question.  

Results and Discussion. Participants provided ratings for 
each of four voters (as the first vote was specified by the 

stimulus), producing a probability for each vote v2,...,v5 and 
corresponding degree of belief for each vote b2,…,b5. Our 
analysis of these data focused on two primary questions. 
First, do participants expect later voters to be influenced by 
a desire to gain the social favor of previous voters, in 
addition to the voter’s own private beliefs? In the absence of 
this social influence, participants should expect each voter’s 
private beliefs to align with their public vote. That is, 
participants who do not expect social favor to matter should 
respond that the likelihood a voter will vote for “yellow” is 
exactly equal to the voter’s degree of belief that yellow is 
the correct answer. Thus, we evaluated systematic 
differences between participant judgments about public 
votes and private beliefs. 

As shown in Figure 2a, mean participant responses 
revealed a significant gap between vote probability ratings 
and degree of confidence ratings: in particular, participants 
rated each voter as less likely to privately believe yellow 
(agreeing with the first voter) than vote yellow publicly 
(βThink = -2.50, SE = .36,  p<.001). This trend is consistent 
across all 4 speakers and across both conditions. 
Furthermore, this gap was substantially and significantly 
larger in the “popular” condition than the “anonymous” 
condition (βPopular = 5.06, SE = .50,  p<.001). That is, when 
the first speaker is described as having a disproportionate 
amount of social power, participants reported that the 
subsequent voters were substantially more likely to vote in 
line with the first voter, but were not more substantially 
likely to believe that the first voter is correct. Thus, 
participants expect the popular voter to have more direct 
influence over the public votes of other agents, but not the 
private votes of those agents. This is consistent with our 

Figure 1: Procedure and example stimuli for Exps 1 & 2. In 
Exp 1, thought bubbles depict each agent’s private beliefs, 
while speech bubbles depict public votes. Participants see all 
agents’ private beliefs & the first agent’s public vote. They 
then predict each subsequent agent’s public vote and private 
belief, iterating through remaining agents. In Exp 2, 
participants only see agents’ public votes and rate their own 
trust in the public consensus.
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hypothesis that participants expect votes to reflect both 
private beliefs and a desire for social favor. 

A second focus of our analysis was the presence of in- 
formation cascades, wherein later voters override their 
initial private beliefs and vote in line with previous voters. 
As shown in Figure 2b, average participant responses do 
reflect an expectation of information cascades. In particular, 
participants who predicted that the second voter would 
“flip” (i.e.: vote contrary to their initial private belief, and 
instead vote in line with the first voter) also consistently 
predicted that subsequent voters would also “flip,” with 
increasing probability. This effect was consistent across both 
the anonymous and popular conditions. However, a 
significantly larger proportion of participants predicted this 
flip in the Popular condition than the Anonymous condition. 
Thus, not only did participants anticipate information 
cascades, they were more likely to predict a cascade when 
the first voter had a disproportionate amount of social 
power. 

To better understand the intuitions underlying participant 
judgments, we estimated optimal parameters for each 
individual participant. Model predictions fit participant data 
well (R=.85 for “anonymous” condition, R=.87 for 
“popular” condition). This enabled us to analyze the 
distribution of optimal parameters for explaining participant 
responses (see Figure 3). Since participants who predicted 
speaker two would flip were overwhelmingly likely to 
predict all subsequent voters would flip as well, we plotted 
separate distributions for the two groups of participants. 
Across both conditions, we found that participants who 

predicted a flip had significantly lower estimated values for 
wself, which corresponds to the expectation that votes are 
determined primarily by a desire for social favor, rather than 
epistemic accuracy. These participants also had significantly 
higher estimates for the social power of the first voter, 
explaining the disproportionate amount of influence these 
participants attributed to the first voter. Additionally, 
participants in the “popular” condition had significantly 
higher estimates for the first speaker’s social power than in 
the “anonymous” condition. 

Experiments 2a-b 
Since participants’ explanations in a pilot suggested that 

some participants might believe that even an Anonymous 
first speaker’s answer would influence subsequent speakers, 
we ran two versions of Experiment 2. In Experiment 2b, we 
told participants that the contest organizers instructed the 
teammates to write down which design they believed was 
best on a piece of paper after thinking silently; in 
Experiment 2a, we omitted mention of this, leaving the 
contest organizer’s instructions identical to Experiment 1. 
We expected this would make participants in both 
conditions more likely to infer that teammates would stick 
to their initial beliefs when asked to vote publicly, but that 
participants in the Popular condition would nevertheless be 
more skeptical of the consensus than participants in the 
Anonymous condition. 

Participants. Experiment 2a comprised n=81 MTurkers 
in one of two conditions (Popular or Anonymous); an 

Figure 2: Experiment 1 results. Color denotes inferred PublicVote or PrivateBelief. Panel 2a: Histogram of predicted vote 
and belief sequences. For visualization, participants are groups by the vote sequence they predict: YYYYY (“all speakers will 
vote (or believe) yellow”), YBBBB (“only Spkr_1 will vote (or believe) yellow”), and “Mixed” (all other sequences). Panel 
2b: lines join each participant confidence in inferring each speaker’s public vote and private belief; values denote means.
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additional 14 were screened out prior to participating for 
failing basic comprehension checks about the instructions. 
Experiment 2b comprised n=80 in one of two conditions 
(Popular or Anonymous); an additional 16 were screened 
out for the same reason.  

Procedure. As in Experiment 1, participants were 
introduced to a five-person team building a remote control 
airplane for a contest using one of two designs. However, 
participants in Experiment 2 were not shown which design 
each participant initially believed best. And, after 
introducing the first speaker as “Max” and describing him as 
“very popular” (Popular condition) or omitting mention of 
his status (Anonymous condition), participants saw that 
every speaker publicly voted yellow, one-by-one. They then 
rated which airplane they themselves believed was best, and 
predicted which design the team would choose, briefly 
explaining their answers for each. Participants responded 
using a 20-point scale anchored at 1-“definitely blue” and 
20-“definitely yellow”. 

Results and Discussion. In order to compare trust in the 
Anonymous condition to indifference between the two 
designs, we centered the response scale at  the midpoint of 
the 20-point scale. When the first speaker’s status was 
omitted (Anonymous), participants believed the consensus-
endorsed yellow design was best (Anonymous: βIntercept = 
5.15, SE = .52,  p<.001). However, when the first speaker 
was described as popular, participants were significantly 
less confident in the yellow design, despite the team’s 
unanimous endorsement (Popular: βPopular = -2.53, SE = .72,  
p<.001), though they were more confident in the yellow 
design than the blue design (Popular: βFlipIntercept = 2.62, SE 

= .50,  p<.001). Results were similar when we compared 
Experiment 2a and 2b directly, with no effect of experiment 
version (βAnonymous = 4.91, SE = .74,  p<.001; βPopular = -2.48, 
SE = 1.02,  p<.017; βExpNum = 0.49, SE = 1.04,  p=.64; 
βPopularExpNum = -0.10, SE = 1.45,  p=.95). Participants were 
also confident that the team would decide on the yellow 
design after talking together, with no difference between 
conditions (InferBest: βAnonymous = 7.04, SE = .35,  p<.001; 
βPopular = 0.27, SE = .48,  p=.58).  

General Discussion 
Briefly put, our results suggest that people make 

systematic inferences about how social status and consensus 
affect their informants’ public and private judgments, and 
even recognize the role of early speakers’ votes in triggering 
information cascades (Banerjee, 1992). Notably, out of the 
118 participants in Exp 1, none of the 62 who believed that 
Spkr 2 would stick to their original beliefs (i.e., vote blue) 
expected any subsequent speakers to flip their vote; but of 
the 56 participants who believed Spkr2 would flip (40 in 
Popular and 16 in Anonymous), 48 expected at least one 
more to flip as well. In other words, only participants who 
expected Spkr1 to flip Spkr2 expected consensus to flip, and 
few expected Spkr2 to flip unless Spkr1 was Popular. This 
belief in the teammates’ tendency to stick to their beliefs 
unless pressured by consensus or high-status individuals 
may help explain why participants in Exp 2 trusted the 
Anonymous consensus despite the risk of social influence. It 
may also help explain why people sometimes appear 
credulous of ‘false’ consensus (Yousif, et al., 2019), but are 
more discerning when dependencies between informants are 
emphasized (Desai et al., 2022) or when informants appear 
to be conscientiously endorsing a belief instead of parroting 
it or conforming to social pressure (Alister et al., 2022; 
Richardson & Keil, 2022a, 2022b; Mercier & Miton, 2019), 
and even anti-consensus after falling prey to conspiracy 
theories (Light et al., 2022; cf. Oktar & Lombrozo, 2022). 
How so?  

Since people’s informants are no more capable of 
evaluating every claim on the merits than they themselves 
are, almost any real-world consensus will be downstream of 
some dependencies. And these dependencies can make 
consensus more accurate instead of less. So instead of 
disregarding consensus simply because informants might 
have influenced each other, people may often count on their 
informants to be discerning judges of each others’ testimony 
unless given reason to believe otherwise. In other words, 
even if people are less skeptical of dependencies in ball-and-
urn tasks than normative models prescribe (Whalen et al., 
2018; Xie & Hayes, 2022), or overly credulous of ‘false’ 
consensus in news reports (Yousif, et al., 2019), it may be 
because such tasks don’t capture the kinds of dependencies 
that people’s information environments have made them 
vigilant towards. Our results suggest that reasoning about 
the effects prestige and conformity have on their informants’ 
reliability may give people reason to be more skeptical. 
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