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1 Introduction and overview

1.1 Theory of Mind and Cognitive Development

Human beings are uniquely social animals. We are born into and raised in social

communities, and as we develop, we come to understand and explain those around us in

terms of hidden psychological states. The term Theory of Mind (ToM) encompasses our

ability to make these psychological inferences, and while we are by no means the only

social species, the capacity to reason about others’ psychological states is apparently

unique to humans (Penn et al 2008). This ability is crucial for language use, social

interaction, and social cognition, and the notion of hidden psychological states is deeply

entrenched in our language and cognition. Children begin to describe people in terms of

psychological states almost as soon as they learn to speak at all (Gopnik & Slaughter

1991). Even in explaining the behavior of non-human objects, children often appeal to
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mentalistic metaphors to fill in conceptual gaps (e.g. the elementary-school physics

explanation that an electron wants to be in a low-energy state).

In recent years, there has been a surge of interest in understanding how our ToM

develops; that is, how do we acquire, store, and manipulate the knowledge encompassed

by ToM? Part of this interest is driven by the notion our ToM might constitute a

foundational human cognition- a core cognitive system that serves as a fundamental

building block for more complex cognitive capacities (Wellman 2014). Another reason for

this interest is that the nature of our developmental data on ToM is somewhat

challenging to explain. On the one hand, we have a significant (and steadily growing)

body of psychological data demonstrating clear and consistent developmental steps in

human ToM acquisition, which seem to universally culminate in a “belief-desire-action”

(BDA) heuristic: roughly, we expect people to do what they believe will get them what

they want. While there is a moderate degree of cross-cultural variability in the ages at

which children acquire certain ToM-skills, there is a very a low degree of cross-cultural

variability in the order in which children tend to acquire those skills. On the other hand,

while the developmental patterns tend to be cross-culturally very consistent, there are

notable exceptions which are tightly correlated to specific cultures, native languages, or

other social contingencies. This makes developmental data on ToM difficult to explain

from a strictly nativist or associationist perspective.

1.2 Contributions of this thesis

The goal of this thesis is to provide the foundations for a rationalist account of human

ToM and its development. We focus on the nature, structure, and origin of the
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“belief-desire-action” (BDA) heuristic that underlies human psychological explanations.

In particular, we shall argue that

1. certain features of BDA folk psychologies are characteristic of rational solutions to

the social inference problems we face in our everyday social experience,

2. it is plausible that we develop BDA folk psychologies because they are rational

solutions to the social inference problems we face in our everyday social experience,

3. to the degree that (2) is true, the developmental trajectories (and deviations) we

observe in our own ToM development may reflect inductive stages of rational

inference over dynamic social data.1

Our approach in developing these arguments is strongly motivated by a “rational

constructivist” or “Theory-theory” perspective. According to this view, human beings

learn about the world through a process much like scientific inference, and store this

knowledge in the form of “intuitive theories,” which share important structural and

dynamic features with scientific theories (Piaget 1964, Gopnik et al 1997). To formalize

this theoretical model of “cognitive development as rational inference,” we construct a

computational modeling framework with three core components:

1. A formal characterization of the behavioral and psychological inference problems

we face in our everyday social experience. This includes the data we collect in

social environments (observation of and interaction with other agents), the tasks

1The stronger argument that our developmental trajectories do, in fact, reflect rational

inference requires empirical analysis that is beyond the scope of this dissertation. We do,

however, outline a methodology for performing this analysis in chapter 4.
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that we perform while navigating social environments (predicting, explaining, and

reasoning about other agents), and the cognitive constraints under which we

operate.

2. A formal characterization of possible solutions to those problems (i.e. possible

theories of mind and psychological explanations), and a normative principle of

rationality for evaluating those solutions.

3. An inference mechanism (ideally a domain-general one) which leverages this

principle of rationality to learn how to solve social inference problems.

This will allow us to precisely characterize and distinguish “BDA-like” folk psychologies,

demonstrate (analytically and through simulation) in what sense they are rational

solutions to social inference problems, and demonstrate how (and under what conditions)

they could be learned from data through rational inference. In this sense, we shall argue

that the Belief-Desire-Action heuristic which underlies human psychological explanation

may emerge naturally due to more general principles of pragmatically rational inference.

1.3 Outline

The remainder of this thesis is structured as follows. In chapter 2, we provide the

scientific, philosophical, and conceptual background for our project. We start by

reviewing the relevant developmental data in more detail, and explaining some of the

main theoretical challenges in accounting for this data. We then describe the main

conceptual approaches that have been used in explaining this cognitive development, and

outline our “constructivist” perspective in more detail. This motivating perspective- that
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our folk psychology is an intuitive theory acquired through an approximately rational

inference process- will dictate our general approach to these questions: First we identify

the inference problems we face in the social domain, a space of plausible solutions to

those problems (given certain assumptions about our cognitive constraints), and a

constraint-sensitive rationality principle for evaluating potential solutions in light of

social data. We then formally characterize the defining features of BDA folk psychologies,

and in what sense (and under what circumstance) those features are rational.

In chapter 3, we present a computational modeling framework for inferring, reasoning

with, and evaluating psychological explanations of agent behavior. The nature of our

query requires that we represent learning and inference at multiple levels of abstraction.

We draw on the formal machinery of Bayesian Theory of Mind, Hierarchical Bayesian

Models, and Probabilistic Programs to develop this framework. Importantly, we define

our framework at an algorithmic, rather than computational, level of analysis, as we will

need algorithmic-level information to derive a rationality principle that is sensitive to the

learner’s cognitive constraints.

In chapter 4, we present a methodological framework for connecting these

computational models to behavioral data in a scientific context. We focus in particular

on infant cognitive-behavioral studies, which are particularly challenging due in part to

the extreme sparsity of available data. We briefly review the most common paradigms

for infant cognitive studies, identify a set of related conceptual and methodological

challenges inherent to these studies, and illustrate how our modeling framework can be

used to help resolve these challenges. Finally, we present a case study in which we use

our modeling framework to provide a more refined interpretation of behavioral data from

a previous study on infant goal attribution (Woodward 1998).
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In chapter 5, we demonstrate how our framework provides a theoretical basis for

studying and modeling ToM development via simulation. We first define and justify a set

of assumptions about the learner’s cognitive constraints, and draw on principles from

philosophy of science and epistemology to derive a normative rationality principle in

terms of these constraints. We then demonstrate how certain features characteristic of

our commonsense psychological explanations can be defined as representational and

relational constraints on models. This allows us to identify and distinguish “BDA-like”

folk psychologies in the context of our framework. We then demonstrate, using both

analytic arguments and simulations, how and under what circumstances certain features

of BDA folk psychologies constitute rational solutions to social inference problems.

Finally, we draw on the highest (i.e. most abstract) level of our hierarchical model to

demonstrate how this rationality principle can be leveraged to learn a theory of mind

from social data, and how this may help us explain our own cognitive development. In

the final chapter, we outline a framework for evaluating these theoretical claims with

empirical data, and describe several promising future directions for research.

2 Background and motivation

2.1 Developmental trajectories in ToM

It is difficult to exhaustively characterize every skill that ToM comprises, so we shall

focus on certain developmental patterns that appear consistently in psychological data

on ToM acquisition. We start by reviewing general developmental trends, before looking

more specifically at developmental transitions that appear in children’s understanding of
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a) desires, goals, and intentions, and b) awareness, perceptions, and beliefs.

2.1.1 General timeline

It is well documented that very young infants, even newborns, preferentially attend to

human faces, voices, and biomechanical movements over other stimuli, though there is

some decline in this tendency throughout the first year (Farroni et al 2002, Frank et al

2009, Johnson et al 1991). While this does not show that infants have a well-formed

concept of agency or attribute agency to other people, it does at least show that infants

can, to some degree, discriminate between human-like and non-human-like objects. By

10-14 months, infants can consistently track an adult’s eye-gaze to an object of interest,

detect when an adult has or lacks visual access to an object, and understand, at least to

some degree, the relation between visual access and awareness (Brooks & Meltzoff 2005,

Kovács et al 2010, Onishi & Baillargeon 2005).

Around this same period, infants begin to identify and discriminate intentional or

goal-directed actions. There is evidence that infants as young as 9 months can

distinguish intentional from unintentional actions and adjust their reaction to an event

based on this distinction (Behne et al 2005). Additionally, 9-12 month old infants can

identify an actor’s goal from repeated behavior and form expectations about the actor’s

future behavior accordingly (Gergely et al 1995, Phillips & Wellman 2005, Woodward

1998). Older infants (18-20 months) have been shown to infer preferences from statistical

information, and leverage these inferred preferences when responding in controlled

experiments (Kushnir et al 2010). Around 2 years old, children can comprehensively

explain and predict behavior in terms of desires and goal satisfaction (Wellman &

Woolley 1990). Additionally, children develop a partial understanding of how visual
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awareness constrains behavior somewhere between 2 and 3 years old (Dunham et al 2000,

O’Neil 1996). However, children 3 and under consistently struggle in tasks that require a

representational understanding of beliefs, or the ability to explain erroneous behavior in

terms of false beliefs (Wimmer & Perner 1983). This ability emerges consistently

between 4 and 6 years of age, at which point children can comprehensively and (mostly)

correctly explain and predict human behavior in terms of beliefs and desires (Perner &

Wimmer 1985). Importantly, while the ages at which these skills emerge varies

cross-culturally, the order in which skills are acquired appears to be very cross-culturally

consistent (with a few notable exceptions) (Wellman & Liu 2004, Shahaeian et al 2011).

The belief-desire-action (BDA) framework that children develop around the age of 5

enables a wide range of mental and behavioral inferences, which closely mirror adult

performance in many social inference tasks. These three categories- beliefs, desires, and

actions- constitute the basis of human psychological explanations, which follow the same

basic heuristic: in short, we expect people to do what they believe will get what they

want. The full picture is, of course, more complicated, but this general heuristic appears

to be nearly universal, emerging in typically developing children around 5-6 years of age.

ToM does continue to develop past these ages; children develop a richer and more

complex understanding of emotions (e.g. that one can experience contradictory emotions

at the same time), an understanding of more abstract principles (e.g. the mind-brain

distinction), and an appreciation for the constant flow of conscious mental activity that

other agents engage in (Gnepp 1983, Flavell et al 1995). For our purposes, however, we

are primarily interested in the development of the belief-desire-action explanatory

framework which consistently emerges around 5-6 years of age.
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2.1.2 Goals, desires, and intentional actions

As discussed in the previous section, infants begin to display some understanding of

goals and intentional behavior around 10-12 months old, and 2 year old children can

consistently explain and predict behaviors in terms of desires. However, it is clear that

these abilities do not emerge all at once. The data reveal several stark transitions in

children’s understanding of goals and intentions, which we review in greater detail here.

Action-understanding in infants: outcomes, goals, and rationality An early

demonstration of goal-awareness in infants comes from a 1998 study by Amanda

Woodward (Woodward 1998). In this study, infants were repeatedly shown an event in

which an actor reached for and grasped one of two visually distinct toys. The toys were

placed such that one was closer and one further from the actor, so that reaching for one

toy resulted in a distinct physical arm motion than reaching for the other (see figure

2.1.1). After being habituated to this repeated stimulus, the positions of the two toys

were switched, and the infant was shown two test events. In the new goal test event, the

actor performed the same physical reaching motion as in the habituation event, thereby

grasping the opposite toy. In the new motion event, the actor reached for the same toy

as in habituation, which required a different physical reaching motion. Infants as young

as 8 months old were consistently more “surprised” by the new goal event than the new

motion event. Under a standard interpretation, this suggests that infants encoded the

actor’s reach in terms of the target object rather than the spatiotemporal profile of the

reach itself2. Thus, infants as young as 8-months old appear to be sensitive to the target

2See chapter 4 for a more detailed explanation of infant cognitive studies and the visual

habituation paradigm

12



object of an actor’s reach, and subsequently form expectations about the actor’s future

behavior in a new environment in terms of this target.

salient change in path of motion might elicit more looking. In contrast, if infants
attend selectively to the goal object of the reach during habituation, then the change
in target object should elicit more looking.
To test whether infants would attend differently to a similar event involving an

inanimate object, another group of infants saw events in which a rod moved toward
and touched the toys (see Fig. 2). The rod possessed many of the same super-
ficial features as the actor’s arm: it was covered in magenta paper and topped
with a nubbly tan sponge that deformed slightly on contact with the toys. This con-
dition provides a control for one possible explanation for positive findings in the
person condition: If infants look longer at the event in which the actor grasps a new
toy, this could be due to the motion of the arm acting as a salience enhancer,
directing the child’s attention to one toy in habituation, and then a new toy in this
event. If this explanation is correct, the same pattern of findings would be expec-
ted when an inanimate object moves toward one of the toys and stops while touching
it.
Note that this approach does not directly address the issue of whether infants infer

that the actor has a particular intention. Rather, it asks whether infants attend to those
spatiotemporal properties that are relevant to the actor’s goal (e.g., the relation
between the hand and the object) or those that are perceptually salient, but less
relevant to the goal (e.g., the path of motion taken by the arm). If infants do attend

Fig. 1. Events for the hand condition in Studies 1 and 2.

6 A.L. Woodward / Cognition 69 (1998) 1–34

Figure 2.1.1: The four conditions used for habituation and test trials in Woodward (1998)

While this reveals that infants have some understanding of how outcomes relate to

goals and actions, our adult understanding of goal-directed behavior allows us to predict

not only what outcome an actor will seek but also how an actor will try to realize that

outcome. In general, given two possible paths to a goal, we expect an agent to take the

shorter/easier/less costly of those two paths, unless there is some compelling reason to

take the longer path (e.g. the shorter path is obstructed). This general idea corresponds

to what is sometimes called a “principle of rationality,” and a 1995 study (Gergely et al

1995) demonstrated that infants form expectations consistent with a rational

interpretation of goal-directed behavior.

In these studies, infants were habituated to one of two events in which an animated

agent moved in an arced path towards a target object (see figure 2.1.2). In the “rational”

condition, the direct path from start to target was blocked by a barrier, thus
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necessitating the arced path. In the “nonrational” condition, the scene contained no

barrier, and the agent traveled in the longer arced path despite the availability of the

shorter, direct path. After habituation, the barrier was removed, and the infants were

shown two test events: one in which the agent takes a direct path to the target object,

and one in which the agent continues to travel in an arced path. The resulting data

showed that infants habituated to the “rational” condition were consistently more

surprised when the agent traveled in an arced path, while infants in the “nonrational”

condition displayed no strong preference between either test event. These results indicate

that infants interpret a behavior as goal-directed not only when the outcome is identical

across multiple habituation events, but only when the identical outcome is achieved

through “rational” means. When the agent takes an indirect path to the target even

though a direct path is available, infants are less likely to interpret the agent’s behavior

as goal-directed, and are less surprised when the agent again chooses the indirect path in

the test event. This result was been subsequently replicated and confirmed in Phillips &

Wellman (2005), who additionally demonstrated that when the target object is removed,

infants do not interpret the behavior as goal directed in either condition. That is, Philips

& Wellman demonstrate that a salient target object is necessary for infants to apply a

goal-based interpretation of behavior, and it is not sufficient to simply observed a

repeated behavior.

The above data (and related extensions/replications) indicate that, by 10-12 months

old, infants a) infer an agent’s goal or target outcome from the equifinality of that

outcome across multiple events, and b) expect a goal-directed agent to take the shortest

available path to the target outcome, consistent with a “principle of rational action.”

However, it is not clear what internal representations and operations drive this behavior.
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because of fussiness (n 5 18), observer error (n 5 14), inter-
ference (n 5 4), and computer problems (n 5 1). Infants were
assigned to the successful-reaching condition (8-months-olds:

n5 23, mean age5 7.79 months; 10-month-olds: n5 24, mean
age5 9.55 months; 12-month-olds: n5 24, mean age5 11.70

months) or the failed-reaching condition (8-month-olds: n5 23,
mean age5 8.03 months; 10-month-olds: n5 20, mean age 5
9.94months; 12-month-olds: n5 20,mean age5 11.91months).

Participants were predominantly European American and from
middle-income homes.

Procedure
Infants sat before a computer monitor. Videotaped events

involving a human actor reaching for a ball were presented on
the monitor in an infant-controlled habituation design (Cohen,

Atkinson, & Chaput, 2004). Previous work (Phillips &Wellman,

a

Successful-Reaching Habituation Event

Failed-Reaching Habituation Event

b

Direct-Reach Test Event

Indirect-Reach Test Event

Fig. 1. Depiction of the action events: (a) the successful-reaching and failed-reaching habituation
events and (b) the direct-reach and indirect-reach test events. See the text for details.
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9.94months; 12-month-olds: n5 20,mean age5 11.91months).

Participants were predominantly European American and from
middle-income homes.

Procedure
Infants sat before a computer monitor. Videotaped events

involving a human actor reaching for a ball were presented on
the monitor in an infant-controlled habituation design (Cohen,

Atkinson, & Chaput, 2004). Previous work (Phillips &Wellman,

a

Successful-Reaching Habituation Event

Failed-Reaching Habituation Event

b

Direct-Reach Test Event

Indirect-Reach Test Event

Fig. 1. Depiction of the action events: (a) the successful-reaching and failed-reaching habituation
events and (b) the direct-reach and indirect-reach test events. See the text for details.
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“Indirect reach” test stimulus

a) b)

Figure 2.1.2: The two habituation conditions (panel a) and two test stimuli (panel b) used
in Gergely et al 1995

One possibility is that infants possess a representational understanding of goal-directed

behavior consistent with adult faculties. Under this rich account, infants attribute richly

structured “desire” states to other agents, and predict behavior by inverting a “rational

plan” for achieving the desired states given contemporaneous environmental constraints

(Baker et al 2009). An alternative “lean” account is that infants do not possess anything

resembling an adult understanding of goal-directed behavior, and are able to form these

expectations solely from frequency information about observable features (Paulus et al

2011). A third possibility, sometimes called the “teleological” account, is that infants

interpret intentional actions by relating outcomes, targets, and constraints through a

principle of rational action, but do so without attributing explicit psychological states to

the agent (Csibra & Gergely 1998). Under this account, the infant’s “teleological”

understanding of actions provides a conceptual scaffolding which supports the

subsequent development of a representational understanding of action.
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There are several experimental results which support the notion that a fundamental

transition occurs in infants’ understanding of intentional actions, and that this transition

somehow involves the attribution of non-physical goal states which may differ from

observed outcomes. Brandone & Wellman (2009) replicate the Gergely et al (1995)

studies, but add an extra unfulfilled goal condition in which the actor fails to realize the

target outcome (i.e. reaches over the barrier and attempts to grasp the object, but drops

it as they pull their hand back). The authors found that 14- and 18- month old

consistently form the same expectations in the unfulfilled goal condition as in the fulfilled

goal condition (which is identical to the “rational” condition in the original experiment).

That is, even when the actor’s target outcome is not physically realized during the event,

14- and 18-month old infants are able to extrapolate the actor’s intended outcome and

predict behavior accordingly. However, 10-month old infants were unable to make that

extrapolation in the unfulfilled goal case, and displayed the same reaction as infants in

the original “nonrational” condition. That is, when the target outcome was not

physically realized, 10-month old infants did not seem to interpret the actor’s behavior

as goal-directed. A similar difference was shown between 12- and 18month old infants in

an active helping paradigm (Bellagamba & Tomasello 1999). In this study, infants were

asked to help an adult participant complete a goal-directed action. In one condition, the

infants observed the actor successfully realize the goal before being asked to do it

themselves. In the other condition, the infants observed the actor attempt but fail to

realize the same goal. The 18-month old infants consistently and accurately helped the

actor achieve their goal regardless of whether or not they first observed a successful

attempt, while 12-month old infants were mostly unable to replicate the goal in the case

of an unsuccessful attempt. These results have been interpreted as evidence of an
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intermediate stage in the development of children’s action-understanding. Whereas

younger infants need to see the goal physically realized in order to interpret behavior as

goal-directed, older infants can extrapolate from failed attempts to correctly infer the

actor’s goal. This may suggest that younger infants dentify goals with the physical

outcomes that follow actions, whereas older infants identify goals with a non-physical

mental state that precedes (and/or causes) the action.

Action-understanding in older children: drives, desires, and intentions While

data from infant studies do not clearly reveal when infants begin to attribute

psychological states, it is clear from available data that, by two years of age, children

possess some form of mentalistic understanding of human behavior. Two and three year

olds can consistently explain and predict behavior in terms of what an agent “wants,”

and associate emotional reactions with the outcomes of goal-directed behavior. For

example, when told that a puppet wants to have a snack and likes crackers the best,

children as young as 2 will correctly predict the puppet’s behavior (e.g. looking for

crackers, choosing crackers over cereal) and emotional reaction (e.g. the puppet who

finds crackers will be “happy,” the puppet who fails to find crackers will be “sad”)

(Wellman & Wooley 1990).

While it is clear that two year olds regularly attribute and explain behavior in terms

of desires, it is more difficult to discern how children understand the representational

structure and functional/causal role of the mental states they attribute, what properties

children associate with these states, and how this understanding develops throughout

childhood. Two properties which appear fundamental to children’s understanding of

desires is that they are
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• non-physical and internal to an agent,3 and

• serve as some kind of motivating force for an agent’s behavior. This is sometimes

referred to as the “mind-to-world” property of desires (Searle & Willis 1983).

However, there are many different conceptualizations which could satisfy these basic

properties, and the data reveal several apparent transitions in how children understand

desires between 2 and 6 years old. To facilitate a discussion of that data, it will be

helpful to distinguish between three related concepts. The first are drives, which

comprise the most basic kind of internal motivation that might cause an agent to act.

Having a drive entails some kind of internal attitude and may motivate an organism to

act in a certain way (e.g. having an “itch” that compels the agent to scratch), but a

drive, in and of itself, does not refer to anything outside of the agent, and depends only

on the agent’s own internal and/or bodily states. This contrasts with what are

sometimes called “simple desires”, which we may characterize as a drive “towards” an

object or state of the world. For example, “thirst” is a drive, which describes a particular

internal need or urge, and may be satiated in certain states of the world (e.g. a state in

which the agent has had water). However, a “thirst state” on its own does not refer to a

particular external state or object, even though it characterizes a need which is satiated

in certain kinds of external states. By contrast, “wanting a glass of water” is a desire, as

it consists of both a motivating attitude and an explicit reference to a target object or

state. Thus, drives and desires both serve as internal causes of behavior, but only desires

are “intentional” in the sense of referring to something outside the agent itself.

3Though Repacholi & Gopnik (1997) show that young infants may not fully recognize

desires as “specific” to an agent, or that other agent’s desires may differ from their own
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Importantly, “simple desires” as conceived above are minimally representational.

They consist of a target object or state and an attitude towards that state, but do not

require additional representational structure beyond the physical target of a desire and

the internal attitude associated with that target. Available data suggests that two and

three year old children can competently predict an agent’s behavior (or an agent’s

reaction to an outcome) by applying a straightforward “outcome matching” strategy:

given an agent’s stated desire, the 2 year old determines which action results in an

outcome that most closely matches the stated desire, and predicts the agent will take

that action; similarly, given the stated desire and subsequent outcome, the 2 year old

determines whether the outcome matches the stated desire and predicts the agent’s

positive or negative emotional reaction accordingly (Wellman & Wooley 1990). However,

two and three year old children seem to struggle with understanding the representational

aspects of desires which are not directly tied to the target object. In one study, for

example, 3 year olds struggled to understand that an agent’s desires toward an object

may change even if the object remains unchanged, while 4 year olds showed no such

difficulty in the same tests (Gopnik & Slaughter 1991).4It has therefore been suggested

that the 2-3 year old understanding of desires is largely non-representational, and that

4For example: a child is presented with 2 books, and asked which one they want to

read. The experimenter then reads that book to the child, and then asks the child which

book they want to read now. The child typically reports that now they want to read the

second book. The child is then asked “which book did you want to read before? Which

book do you want to read now?” 4 year olds consistently report both their previous desire

and their new (changed) desire, while 3 year olds struggled to report their previous desire,

and often responded as if they had wanted the second book all along.
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the inability to understand representational mental states is also the reason for 3 year

old childrens’ difficulty in understanding beliefs (Gopnik & Wellman 1992).

The third important conceptual distinction is that between desires and intentions.

While a desire may be a simple, non-representational state (consisting of a physical

target and an attitude towards that target), an intention is more complex and explicitly

representational. Intuitively, we may think of a desire as an attitude towards a certain

object or outcome, and an intention as a structured plan to realize that desire (or more

generally, to resolve a situation involving multiple, possibly conflicting desires, as well as

beliefs and physical constraints). For example, my desire to have a cookie is distinct from

my intention to go get a cookie from the box in my kitchen (and then eat it). The former

consists only of the target state (one in which I have eaten a cookie) and a corresponding

internal attitude (I would like to be in that state). The latter integrates my desire along

with my relevant beliefs (e.g. that there is a box of cookies in my kitchen, that there are

still cookies in the box, etc.) and any relevant physical constraints (I am in my living

room and can easily walk to the kitchen) into a coherent plan to realize my desire.

Several studies reveal some stark differences in how 4 and 6 year old children

conceptualize and distinguish between desires and intentions. In one study (Schult

2002), children were presented with carefully constructed stories in which desires and

intentions diverge (e.g. I desire a cookie, I plan to go get one from my kitchen, but as

I’m about to get up from my chair my roommate brings me a cookie; in this case my

desire was fulfilled but my intention was not). In these studies, 3 and 4 year olds were

consistently unable to distinguish desires from intentions, while 5 and 6 year olds

frequently matched adult competencies in the same tests. Another study (Kushnir et al

2015) revealed a key difference in how 4 and 6 year olds understand the functional role of
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desires and intentions. In particular, 4 year olds consistently described and reasoned

about desires as direct causes of human behavior. For example, if I want a cookie and

there is a cookie in front of me (which I am allowed to eat), then according to the 4 year

old understanding, my desire to have a cookie makes me take the cookie. If I do not take

the cookie, then, according to the 4 year old, there must be something preventing me

from doing so. This contrasts with a 6 year old (and adult) understanding, according to

which human beings may freely act against or inhibit their own desires. Thus, while the

4 year old seems to understand desires as a direct cause of human behavior, 6 year olds

recognize desires as just one of several inputs that determine our specific intentions.

To briefly summarize these findings in a way most relevant to our current

investigation:

1. Infants can form expectations about an agent’s future behavior based on the

equifinal structure of the agent’s past behavior, but it is unclear whether (and at

what stage) infants begin to attribute explicit psychological states to agents.

2. 2 and 3 year olds regularly attribute “simple desires” to agents, and can

competently explain and predict behavior by matching stated desires with observed

outcomes (or conversely, infer desires/preferences from repeated equifinal

outcomes).

3. However, 2 and 3 year olds struggle to understand the representational aspects of

desires not explicitly tied to the target state, for example that an agent’s desires

may change while the target object remains unchanged.

4. 4 year olds are more competent at understanding desires and changes in desires
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that are not tied to a target object in an immediately apparent way. However, 4

year olds struggle to distinguish desires and intentions, and seem to interpret

desires as direct causes of behavior, rather than one of several inputs that help form

intentions. By 6 years old however, children seem to develop a representational

understanding of intentions that largely approximates an adult understanding.

2.1.3 Perspective, awareness, and beliefs

Human infants appear to be born with an interest in human faces, voices, and eyes.

Newborns will preferentially attend to human faces over other stimuli, and have been

shown to distinguish direct eye contact from an averted gaze (Farroni et al 2002,

Johnson et al 1991). The ability and tendency to follow an adult’s line of sight to an

object of interest- sometimes called “gaze-following”- consistently emerges by 6 months

of age (D’Entremont et al 1997). A crucial question about early gaze-following is

whether it reflects an understanding of the connection between visual access and

knowledge/awareness. That is, do infants understand that “seeing is knowing,” or does

the infant’s tendency to gaze-follow simply reflect the fact that following an adult’s line

of sight tends to reveal interesting information (i.e. whatever the adult is looking at)?

A number of experiments provide results which help discern these two possibilities.

Infants 14-18 months old are significantly less likely to gaze-follow if the subject’s eyes

are closed, if the subject is wearing a blindfold, or if the subject’s line of sight is visibly

blocked by an opaque barrier. Infants 10-12 months old have more mixed results with

the blindfold and barrier tests, but consistently distinguish between eyes-open and

eyes-closed in gaze-following tests, and infants younger than 9 months appear not to

discriminate between open and closed eyes when gaze-following (Brooks & Meltzoff 2002,
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Brooks & Meltzoff 2005, Butler et al 2010). A 2008 study by Meltzoff & Brooks provides

stronger evidence that 18 month old infants understand the connection between visual

access and awareness. In this study, 18 month old infants were first given self-experience

with a trick blindfold that appeared to be opaque from afar, but which did not occlude

the subject’s vision. After trying these blindfolds out for themselves, the infants were put

through a similar test as in the above blindfold experiments. Infants who had experience

with the trick blindfold were significantly more likely to gaze-follow a blindfolded adult

than the control group who did not get to experience the trick blindfold. This suggests

that, by 18 months, infant gaze-following is not purely driven by observable cues, and

reflects at least a partial understanding of how visual access influences visual experience.

It is not always clear what specific features or cues drive infants’ tendency to

gaze-follow at different stages of development. It is clear, however, that older infants and

young toddlers have some ability to a) determine an agent’s visual access, b) determine,

at least partially, how visual access influences awareness, and c) form expectations about

an agent’s behavior based on their awareness. Tomasello and Haberl (2003), for example,

demonstrate that 12- and 18-month olds can determine what is “new” for other people.

That is, if one of two adult participants is looking away while a new toy is introduced,

12- and 18- month old infants can recognize the “newness” of the toy to the adult that

lacked visual access, and form corresponding expectations about that adult’s behavior.

Similarly, O’Neill (1996) demonstrates that, when requesting an adult’s help in accessing

an out-of-reach toy, 2 year olds will provide significantly more information and

instruction when the adult did not see the toy being put away. Thus, it is clear that by

18-24 months, children have some understanding of how visual access influences

knowledge and constrains behavior.
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Note, however, that a child’s performance in these tasks does not necessarily entail

that the child attributes richly structured belief states or representations to agents. It is

possible, for example, that younger children can only recognize whether or not an agent

has epistemic access to an object, and how the lack of epistemic access to an object

constrains that agent’s behavior (relative to what the agent would have done if they had

access). This sort of intermediate, “lean” access state would enable younger children to

form expectations consistent with a rich understanding of belief in certain cases, but not

others,5 yet does not involve full fledged “belief” attributions.

Indeed, there is evidence that two year old children tend to struggle with tasks that

require an understanding of the representational aspects of awareness. To this end,

Masangkay et al (1974) distinguish between two kinds of perspective- and awareness-

inference tasks. In a Level 1 task, a child must determine whether or not another agent

has visual access to an object; for example, a 2 year old might be shown a card that

contains a picture of a house on one side and is blank on the other. The card is then

held so that the blank side faces the child while the other side faces an adult participant,

and the child is then asked whether the adult can see the house. 2- and 3-year old

children consistently pass such tests. Level 2 tasks, however, require an understanding of

how an object appears to another agent. For example, the child might be shown a card

with a picture of a house on one side and an arrow on the other, oriented so that if the

arrow points down, the house is upside down. The card is then held so that the arrow

faces the child and the house faces the adult, and the child is asked whether the house

appears right-side up or upside-down to the adult. Children 4 and under consistently fail

these tasks; the ability to consistently perform level 2 perspective inference emerges

5We provide a simulated example of this in chapter 5.3
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around the ages of 5-6.

A second stark transition is revealed by the so-called “false-belief” test. In the

archetypal false belief task (Wimmer & Perner 1983), the child is shown a video in which

an actor (“Sally”) places a toy into one of two boxes, then leaves the room. A second

actor (“Anne”) then enters the room and moves the toy to the other box. Finally, Sally

re-enters the room and searches for her toy. The video is then paused and child is then

asked to predict where Sally will search for her toy. For someone with an adult

understanding of intentional behavior, the obvious answer is that Sally will search the

box in which she initially hid the toy, as she was out of the room and therefore unaware

of the toy being moved to the other box. In these tests, however, children 3 and under

consistently answer that Sally will look in the box that actually contains the toy. The

ability to correctly answer in these tests appears to emerge between the ages of 4 and 5.

These results have been cited as evidence that younger children lack an understanding

of the representational aspects of belief- namely, that beliefs about the world may

misrepresent or mismatch the actual state of the world. However, a number of studies

have claimed to show an understanding of false beliefs in much younger children, even

infants (Baillargeon et al 2010, Kovács et al 2010, Onishi & Baillargeon 2005). In these

studies, variations of the standard false-belief test described above are translated into a

non-verbal format compatible with the visual habituation paradigm. Infants as young as

10 months display dishabituation patterns consistent with a 5-6 year old’s false belief

understanding (e.g. fixating longer when the actor correctly searches the new box despite

not observing the toy being moved to that box). These results present a conundrum:

how do infants correctly understand how false beliefs constrain behavior when 3 year

olds fail the verbal equivalents of the same tests? One proposal is that infants and young
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toddlers track something belief-like but more primitive than a full fledged belief state.

That is, infants can determine whether or not another agent is aware of an object (or

aware of its location), and can infer how this awareness constrains action, but they do

not attribute structured or representational “belief states” as older children do.

More generally, it has been suggested that difference between the 3-4 year old’s ToM

and the 5-6 year old’s ToM is best characterized in terms of the “richness” or “leanness”

of the attributed representations (Wellman & Wooley 1990). That is, the 3-4 year old

ToM captures the motivating force and intentional nature of desires, the relation between

visual access and awareness of one’s surroundings, and the way that one’s awareness

constrains one’s intentional behavior. The 5-6 year old’s ToM extends this initial theory

with richly structured representational mental states. This is further supported by the

evidence of a transition between Level 1 and Level 2 perspective taking, where Level 1

tasks only require an understanding of “what” objects the agent is aware of, while Level

2 tasks require an understanding of “how” the objects appear to the agent.

2.1.4 Summary of key patterns and statement of goals

Before moving on, we will briefly recap these findings and relate them to our overall

goals:

To recap: very young children and even infants (∼8-24 months) appear to understand

the goal-directedness of intentional behavior, infer simple goals and preferences from

observed behavior, and form expectations about future behavior based on inferred goals

and a principle of rational action. Intuitively, children 2 and under expect an agent to

take the best possible action which fulfills their goals. Additionally, children in this age

range can determine whether another agent has visual access to an object or event,
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understand how visual access constrains awareness, and understand how awareness

constrains action. Intuitively, they can tell who sees what, understand the notion that

“seeing is believing” (in some constrained sense), and understand how “lack of awareness

of x” can inhibit behaviors normally generated by “desire for x.” Children 3 and under

consistently fail verbal false belief tests and tasks which require “Level 2” perspective

taking. Both of these abilities tend to emerge around 4-5 years old. Younger children

also struggle to distinguish intentions from desires, and seem to interpret desires as

direct causes of action, whereas older children (5-6) distinguish the desire itself (i.e. a

target object or state and a motivating attitude) from the intention to realize that desire

through a specific means (i.e. the “plan” and planning process).

The data reveal a stark transition between the 2-year-old’s ToM and the 5-year-old’s.

It has been argued that the fundamental distinction between the 2-year-old’s ToM and

the 5-year-old’s is representation (Gopnik & Wellman 1992): the two year old, while

capable of many complex social inferences, struggles with tasks that involve the

representational aspects of other people’s mental states. The two year old can clearly

recognize simple desires and drives and how they motivate action, but this understanding

is limited: “I want a cookie” consists of a target and a motivating attitude, and leads

directly to goal-directed action: If I want a cookie, I see a cookie, and I’m allowed to

have the cookie (Kushnir et al 2015), then my desire for the cookie makes me take the

cookie. This is very different from the adult picture: I want a cookie, I see a cookie, I

know I could have the cookie, but I may choose not to take the cookie (because I know I

shouldn’t eat too many cookies), or I may choose to get a cookie elsewhere (because

there is a shop with better cookies on my route to work), or I may save the cookie for

later (because I know I will want something sweet after lunch). Thus, to an adult, desires
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constitute one input to a complex planning process over hypothetical representations,

rather than an attitude toward an object that directly causes action. There are similar

differences between 2 and 5 year old’s understanding of awareness and perspective. The

two year old can tell “whether X sees Y,” but not “how Y appears to X.” The two year

old can tell, at least implicitly (Low & Watts 2013), that a parent who didn’t see a toy

being put on a shelf won’t immediately search that shelf when prompted to retrieve the

toy. But, when asked to explicitly describe a mistaken belief, or predict an action on the

basis of that belief, children 3 and under tend to struggle. Thus, while the two year old

understands “awareness” as a kind of direct epistemic access to the environment, older

children seem to recognize beliefs as distinct representations, which track the

environment in some way, but which are importantly fallible and may “misrepresent.”

With this in mind, we can now articulate our main questions of interest. The first

question is: why beliefs and desires? That is, why do we so consistently develop a folk

psychology that explains behavior in terms of these two fundamental categories of

mental states? Of course, “belief” and “desire” are both broadly defined commonsense

concepts, so in order to address this question we will need to formally characterize the

representational, relational, and functional features that distinguish these categories.

The second question addresses the developmental trajectory from lean,

minimally-representational ToM to richly representational ToM that we’ve described in

this section. In particular, does this trajectory reflect the inductive behavior of a rational

inference mechanism, and if so, what drives the inductive transitions from lean to rich?

Obviously the “lean/rich” distinction is a graded, rather than binary concept, and we

will need to characterize what it means to have a “leaner” or “richer” psychological

model. Before presenting the formal framework we derive to answer these questions,
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however, we shall review the philosophical background and motivation for our rational

constructivist approach to ToM.

2.2 Conceptual and philosophical motivations

Now that we have laid out the empirical motivation for our questions of interest, we shall

provide conceptual and philosophical motivation for the approach we intend to take. Our

rationalist approach is largely motivated by the “Theory-theory” perspective. In this

section we outline this motivating perspective, contrast it with other approaches to

understanding cognitive development, and describe how we can transform this

conceptual framework into a computational one.

2.2.1 Explaining cognitive development

Any attempt to understand the development of our Theory of Mind must address a

recurring tension that underlies cognitive science in general. On the one hand, adults

seem to possess abstract, coherently structured knowledge and representations, which

allow us to interpret, predict, explain, and control our surrounding environment. But at

the same time, this abstract knowledge is not obviously present in young children;

somehow, we seem to acquire this knowledge from our concrete, noisy, often incomplete

sensory evidence. How, then, could we extract these abstract, structured representations

from sensory experience, especially given that our representations play a critical role in

allowing us to interpret that experience in the first place? This tension is especially

pronounced in understanding the development of ToM, which inherently involves

abstract, unobservable entities.
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Historically, attempts to resolve this tension are often grouped under one of two

labels. Traditionally nativist accounts assert that the coherently structured knowledge

and concepts we possess could not be learned from experience. Such accounts often

appeal to a poverty of the stimulus argument (Chomsky 2006); essentially, that the

coherent knowledge structures we possess (e.g. the grammar for speaking a given

language) are underdetermined by the data we receive (e.g. examples of valid sentences

and exchanges in that language). That is, the evidence we receive is, from a

learning-theoretic perspective, insufficient to reliably infer the knowledge we possess from

that evidence alone (Gold 1967). Thus, such accounts propose, much of the coherent,

abstract structure apparent in our knowledge must be part of our “initial learning state,”

i.e. must be innate. In Chomksyan linguistics, this innate structure constitutes the

Universal Grammar (Chomsky 1986); in more recent, general cognitive science accounts,

they take the form of innate knowledge “modules” or core knowledge systems (e.g.

Pinker 1997, Spelke & Kinzler 2007), some of which remain latent until later

development.

Conversely, traditionally empiricist or associationist accounts suggest that our

cognitive capacities reflect a collection of context-dependent “modules” or functions,

acquired through extremely general learning mechanisms that extract statistical

regularities between inputs and outputs. Recent empiricist accounts leverage the

technical developments in neural networks (e.g. Elman et al 1996) or dynamic systems

(e.g. Thelen & Smith 1994). Under these accounts, the abstract structures that appear

to underly our cognitive development are, in fact, emergent from this collection of

learned associations and functions.

In truth, it is somewhat misleading to regard any one account as “purely nativist” or
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“purely empiricist,” or to view “nativism” and “empiricism” as distinct, mutually

exclusive theories of human cognition. Even core-knowledge theorists acknowledge that

sufficient differences in available evidence influence the development of children’s

knowledge, at least somewhat (Spelke & Kinzler 2007). Furthermore, much of our

knowledge can only be realized in an appropriate environment- consider, for example, an

abstract understanding of how computers work, or learning to comprehend novel slang

expressions that do not adhere to any compositional grammar. Conversely, any

empiricist account must take something as given, something on which subsequent

statistical learning can be founded. This often takes the form of a base set of perceptual

primitives (e.g. color experiences and edge-detectors) and/or an innate set of statistical

learning mechanisms.

Rather than viewing nativist and empiricist accounts as distinct and mutually

exclusive theories of human cognition, we believe it is more informative to view nativism

and empiricism as occupying different regions in a broader conceptual space, one with

(at least) two relevant dimensions. The first dimension is whether, and to what degree,

our knowledge is learned rather than built-in. The second is whether, and to what

degree, our knowledge consists of abstract, richly structured, domain-general

representations and mechanisms, or lots of distinct, separable modules, each of which

serves a distinct context-specific function. As we develop our perspective, the relevant

question is not whether our ToM-related knowledge is innate and abstract or learned and

context-specific, but what aspects specifically are learned, what is innate; what skills

could be explained as a context-specific instantiation of a domain-general mechanism,

and what skills are difficult to explain without innate, domain-specific knowledge

structures? With this in mind, our approach is motivated by the hypothesis that what is
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innate are not complete, comprehensive abstract structures, but a set of primitive

“conceptual building blocks” in which abstract, structured knowledge can be acquired

and represented. This is sometimes referred to as a “minimal nativism” (e.g. Goodman

et al 2011, Kemp et al 2007), which posits a small set of constraints on the learning

process, rather than a wide range of pre-existing structured representations.

At a high-level, this perspective is closely related to Piaget’s theory of constructivism

(Piaget 1964, Wadsworth 1996), or the more recently named “Theory-theory” (Gopnik &

Meltzoff 1997). Under a constructivist perspective, our abstract knowledge is represented

in the form of intuitive theories, which are incrementally learned (or “constructed”) from

sensory experience. The Theory-theory makes the more specific assertion that these

intuitive theories are, in fact, very much like “theories” in science, and that our learning

and cognitive development proceed very much like theory-revision in scientific research.

While Piaget’s constructivist theory was a promising attempt at resolving this tension, it

lacked any detailed account of how such learning processes might work. However, more

recent developments in Machine Learning provide extra tools for modeling how such

knowledge could be represented and acquired.

2.2.2 Intuitive theories and the Theory-Theory

In trying to explain human cognitive development as a process of intuitive

theory-revision, Theory-theorists identify a number of key characteristics shared by our

intuitive theories, which help distinguish a Theory-theory account from more nativist or

empiricist accounts (Gopnik & Wellman 2012). First is the distinctive structure of our

intuitive theories, which involve coherent, abstract representations of the world and its

underlying causal mechanisms, and often include hidden, posited entities. Theories also
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tend to be hierarchically structured, enabling prediction and explanation at multiple

levels of abstraction or domain-specificity. The term “framework theory” is sometimes

used to describe more abstract, domain-general theories, which specify the applicable

entities and relations for a domain, rather than specifying the low-level details of those

relations. A framework theory can also include some number of over-hypotheses (Kemp

et al 2007) which constrain how the relevant predicates can be instantiated. Second, our

theories serve distinctive cognitive functions, allowing us to perform a wide range of

predictions and counterfactual inferences across a wide range of domains. Third, theories

are dynamic, and change in light of new evidence. Importantly, children’s intuitive

theories can change in local, specific ways (e.g. learning to better predict an object’s

visible trajectory) and in broad, high-level principles (e.g. learning that objects continue

to exist even when out of sight).

More recent developmental data reveal additional dynamic features of children’s

intuitive theories, in particular the important role of statistical information and

probabilistic contingencies in children’s learning. Even infants are sensitive to sampling

distributions and can infer preferences or psychological intentions from statistical

information (Xu & Denison 2009, Kushnir et al 2010). Second, informal experimentation

and intervention play an important role in how children learn about causal structure.

Third, children’s theory change relies on variability, often testing and assessing multiple

hypotheses simultaneously, and can generate new hypotheses by gradually “perturbing”

existing hypotheses. This contrasts with a more traditional, learning-theoretic view of

children’s learning as a search process that points to a single hypotheses out of a

pre-defined space of possible alternatives.

While there is much debate over the specific details of what concepts children acquire
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when (and in what order), the data show a clear developmental picture in children’s

learning, characterized by the common features described above. Much of this data

comes from recent studies motivated in large part by this Theory-theory perspective, and

indeed the Theory-theory has been quite fruitful in directing new research. However,

while the data generated by these experiments are rich and informative, the

Theory-theory has, until recently, lacked a plausible computational account of the

learning mechanisms involved in high-level, abstract theory revision. Thus, while the

data paint a vivid picture, the constructivist project suffered from theoretical vagueness.

In the past decade, however, there has been a resurgence of interest in constructivist

accounts, motivated by the development of new formal machinery. Several authors have

proposed that Causal Graphical Models (CGMs) and Hierarchical Bayesian Models

(HBMs) can provide a computationally-grounded account of how we represent, acquire,

and use intuitive theories (Gopnik & Wellman 2012), as well as the process through

which we revise these intuitive theories (Henderson et al 2010). We now present a

computational framework that applies these concepts to human ToM.

3 Computational framework

3.1 High level overview

Here we provide a high level overview of our computational framework. At its core, the

models in this framework represent a single “observer” agent making inferences and

predictions about the behavior of one or more other agents (actors). In order to properly

define and evaluate our questions of interest, we will need to represent inference
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problems (and solutions to those problems) at three levels of abstraction. We provide an

intuitive overview of these three levels before presenting a hierarchical framework that

incorporates all three.

3.1.1 Level 1

A Level 1 problem corresponds to inferring a “psychological explanation” (formalized as

a kind of probabilistic generative model) for a particular episode of a particular agent’s

behavior, and then manipulating this explanation to reason about the episode. This

reasoning can include:6

• Behavior prediction; e.g. “What will the actor do next, given what they’ve done so

far?”

• Psychological inference; e.g. “What does the actor want/believe, given the way

they behave?”

• Control inference; e.g. “How do I get the actor to do X?”

• Counterfactual inference; e.g. “What would the actor have done if this object

weren’t here?”

Importantly, the observer will often have to do both of these tasks (infer a psychological

explanation, and manipulate that explanation to do reasoning) contemporaneously and

dynamically as the episode elapses. After all, an important feature of our ToM is that we

6Note that the observer’s ability to perform these inferences depends on the structure

and content of their explanation; e.g. an observer who does not attribute belief states to

actors will obviously not be able to infer an actor’s belief
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use it to navigate social environments. It is therefore important that our framework

captures not only how the observer explains a completed episode, but how the observer

progressively updates their explanation as they acquire more evidence.

3.1.2 Level 2

The inputs to a Level 1 inference problem are a (partial) episode of an actor’s behavior

(the data), and a context-general “model” of that actor’s behavior generating process

(which will often include hidden psychological states posited by the observer).7 A Level

2 problem corresponds to inferring such a model for a particular actor, given multiple

episodes of that actor’s behavior (usually across multiple different environments) and a

higher level “model template” or “framework theory” (Level 3 inference) that constrains

the space of possible models. Inferences at this level may include

• Inferring an actor’s preferences or values over outcomes

• Identifying actor-specific behavioral quirks (e.g. a frequent behavioral pattern that

serves no apparent purpose)

• Identifying actor-specific cognitive constraints (e.g. that an actor has limited

vision/visual range, or that an actor has/lacks the ability to form complex plans)

A Level 2 problem may involve learning an actor model from a large number of episodes,

or progressively updating an existing model on a sequence of episodes. It may involve

7We put “model” in quotes because technically, this object does not specify a single

model, but a comprehensive set of instructions for constructing a model in a particular

context
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updating a single parameter or constraint in the model, or constructing a new model

from scratch for a previously unknown actor. In either case, the inputs to a Level 2

problem are the data, which consist of multiple episodes of a single actor’s behavior, and

the model template, which is inferred at Level 3.

3.1.3 Level 3

Intuitively, a Level 3 problem corresponds to learning a “psychological framework

theory,” which specifies

1. an ontology of mental entities (and their corresponding domains/types) that can

be used to construct a psychological model,

2. a set of constraints on how these entities may interact with external stimuli,

observable behavior, and other mental entities,

3. a set of constraints on the functional and algorithmic forms of relations between

these entities, and

4. a probability distribution over possible configurations of entities and relations,

subject to constraints.

A single configuration of each (i.e. a set of allowable entity types, a set of allowable

relations between those entity types, and a set of allowable functional and algorithmic

forms mediating those relations) provide the “model template” for the actor-specific

models inferred at Level 2, and these actor-specific models provide a template for the

episode-specific explanations inferred at Level 1. The observer’s “psychological

framework theory” specifies both the space of possible templates, and a prior distribution
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P (t), over templates, where P (t) captures the prior probability that the behavior of a

(previously unknown) actor will be explained by an actor model with model template t.

The data for a Level 3 inference problem comprise multiple episodes of multiple

different actors’ behavior, ideally across multiple different systems, and can be performed

contemporaneously with Level 2 and Level 1 inference. Like Level 2 inference, Level 3

problems may involve constructing a full theory from scratch over a large body of data,

or updating one or more constraints in an existing theory from a small number of new

observations. Intuitively, these updates involve inferring general psychological properties

about actor behavior; e.g. inferring that actors are (usually) constrained by their visual

awareness, or that actors tend to have (peaked and sparse) or (flat and dense)

preferences over a fixed set of possible outcomes, or that younger actors are less likely to

engage in complex planning than older actors.8

3.2 Technical background

Here we review the formal machinery we shall use to construct the framework.

3.2.1 Bayesian inference and Bayesian models of cognition

The basic claim underlying the Bayesian approach to cognition is that much of our

cognitive behavior can be accounted for as approximately rational probabilistic inference.

At the core of any Bayesian theory of cognition is an observer model: we represent a

learning or inference agent as a rational observer with some prior knowledge or

8Though the demonstrations in this thesis won’t involve any observable demographic

features like age
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expectations, and ask how that agent would optimally respond to a given stimulus or

event. We can use this to provide theoretical justification for the hypothesis that a

particular aspect of human knowledge or cognition is “learned” (by demonstrating how it

could be learned). We can also invert this analysis to ask what prior knowledge,

representations, or expectations lead to behavior consistent with what we observe in

humans.

An observer model consists of two components. The first is the observer’s hypothesis

space, H: this represents the possible explanations that the observer may consider for a

given class of stimuli. At an abstract level, a hypothesis induces a probability

distribution over possible observations,9 which allows the observer to perform

probabilistic inference and predictions about a given class of stimuli. If, for example, the

stimuli in question consist of two observable features s = (f1, f2), then a hypothesis in

this domain induces a joint probability distribution P (f1, f2). Under this hypothesis, the

observer can compute the likelihood of a particular observation (i.e. stimulus with

certain feature values), and can also predict or infer the value of one feature by observing

the other.

The second component is a prior distribution over hypotheses, P (H). This represents

the observer’s prior degree of belief in each hypothesis in the absence of any relevant

evidence. When presented with some evidence E (i.e. one or more observations), the

observer updates the degree to which they believe each hypothesis h according to Bayes’

Theorem:

9Or, if the hypothesis includes posited hidden states, a joint distribution over configu-

rations of the hidden states and possible observations
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P (h|E) =
P (E|h)P (h)

P (E)
(3.1)

Here, P (h|E) is the posterior probability of h given E: this is the degree to which a

rational observer would believe hypothesis h given evidence E and prior beliefs P (h).

The denominator P (E) is a normalizing term which we may ignore for the scope of this

dissertation,10 instead writing Bayes’ Theorem as P (h|E) ∝ P (E|h)P (h).

Most often, the observer’s hypothesis space is defined in terms of a generative model,

which specifies a probabilistic process for generating (simulated) observations, and

induces an implicit probability distribution over possible observations (in section 3.2.4,

we shall illustrate how to make this implicit distribution an explicit object). A

generative model is defined in terms of its structure and parameter space. The structure

comprises the set X of variables in the model (including observable variables and any

hidden variables posited by the observer), and the dependence relations between these

variables, encoded by a dependency relation R. This dependency relation determines an

efficient way to parameterize the joint probability distribution induced by the model. In

particular, if we let X denote the set of variables in a generative model, and par(x)

denote the set of variables on which x is dependent (i.e. all y ∈ X such that y → x),

then the joint distribution P (X ) factors as11

10We can ignore the denominator because our framework only requires computing a

ratio of posteriors P (h1|E)/P (h2|E), in which case the normalizing terms cancel out
11In general, the Markov Property for directed acyclic graphs (DAGs) entails this corre-

spondence between the dependency structure of the graph and the factorized form of the

induced joint distribution
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P (X ) =
∏

x∈X
P (x|par(x)) (3.2)

Here, each term P (x|par(x)) corresponds to a vector of parameters which determine the

probability of x taking on a value in its domain, given the values of its parent variables.

The set of all terms P (x|par(x)) constitute the parameter space Θ for the generative

model. Thus, the structural part of a generative model (i.e. its variable set and

dependency relation) determine a hypothesis space of parameter vectors, and each

parameter vector corresponds to a single hypothesis (i.e. distribution).

3.2.2 Hierarchical Bayesian Models

In many cases, we wish to model inference at multiple levels of abstraction, across

different scopes of data. For example, suppose we wish to infer the bias w of a particular

coin after observing some sequence of flips E = (x1, x2, . . . , xn). This process has a simple

generative model (see figure 3.2.1): each flip is generated by a Bernoulli distribution with

weight w, and a sequence of n flips is generated by n independent Bernoulli samples. We

particular coin after observing some sequence of flips E = (x1, x2, . . . , xn). This process

has a simple generative model: each flip is generated by a Bernoulli distribution with

weight w, and a sequence of n flips is generated by n independent Bernoulli samples (we

can represent this generative model graphically . We can use apply Bayes’ rule as

described above to infer the bias of this particular coin:

P (w|x1, . . . , xn) / P (x1, . . . , xn|w)P (w) =
nY

i=1

P (xi|w)P (w)
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2.2 Bayesian Theory of Mind

Over the past few decades, a Bayesian modeling approach has been used to account for a

wide variety of cognitive functions, including object perception (Kersten & Yuille 2003),

prediction of object trajectories (Weiss & Adelson 1998), visual feature inference

(Gri�ths & Austerweil 2009), and word learning (Xu & Tennebaum 2007). More

recently, Bayesian models have been used to model mental inference in humans (e.g.

Baker et al 2009, Baker et al 2011, Hamlin et al 2013). These models use the same three

basic components described above: a hypothesis space of generative models, a prior

distribution over hypothesis, and the application of Bayes’ Theorem.

To quickly illustrate the core components of Bayesian ToM, consider a simple

example in which actors navigate a two-dimensional grid world. Figure 1 illustrates a

simple generative model that an observer might posit to explain an actor’s behavior in

such an environment.

According to the generative process posited by this observer, the actor’s behavior at
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Figure 3.2.1: Generative model for a sequence of n coin flips with bias w
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can use apply Bayes’ rule as described above to infer the bias of this particular coin:

P (w|x1, . . . , xn) ∝ P (x1, . . . , xn|w)P (w) =
n∏

i=1

P (xi|w)P (w)

The observer’s relevant background knowledge for this inference consists of the functional

form for P (xi|w) (i.e. the probability of observing outcome xi, given that the true weight

of the coin is w), and a prior distribution P (w) over possible weights of the coin. If the

observer has no relevant past experience, the prior P (w) may be uniform over (0, 1),

indicating that the observer has no reason to believe that one range of weights will be

more likely than any other range of equal length. However, even if we have no past

experience with this particular coin, we may suppose that our past experience with other

coins might provide relevant evidence for experience with this new coin. For example, if

most coins that we have encountered in the past are approximately fair, we might expect

this new coin to be approximately fair. In order to represent this sort of generalization

from other relevant experience, we need to add another level of inference to the model.

Suppose that we now get to observe sequences of coin flips for several different coins, all
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Figure 3.2.2: Generative model for three sequences of n coin flips for each of 3 coins
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minted in the same batch at the same factory, and therefore (we shall assume) equally

likely to bear defects that affect the bias. We can generalize the generative model in

figure 3.2.1 to a hierarchical model with an additional level (see figure 3.2.2). According

to this model, the prior distribution over w is itself determined by a hyperparameter α

(i.e. P (w|α)), and the bias for each of the coins is drawn from this same prior. This

allows the observer to draw on past experience with different coins to update their

estimate of α, which in turn allows for more efficient and accurate estimates of the new

coin’s bias. Specifically, if we let Ea, Eb, and Ec denote the evidence (sequence of flips)

for coins a, b, and c respectively, the observer can apply Bayes’ Rule to compute

P (α|E1, E2, E3) ∝ P (E1, E2, E3|α)P (α)

According to the observer’s generative model, the sequences E1, E2, and E3 are

conditionally independent given α, so the term P (E1, E2, E3|α) decomposes into terms of

the form P (xij|α). For each of these terms, the observer can marginalize out the bias

parameter wi, by computing the integral

P (xij|α) =

∫
P (xij|wi)P (wi|α)dwi

This illustrates the basic principles of Hierarchical Bayesian Models: each lower level

of inference is constrained by prior knowledge at higher levels (e.g. inference about the

bias of a coin is constrained by the higher level parameter α, inference about a particular

coin is constrained by its bias parameter), and prior knowledge at higher levels can be

inferred and updated from evidence collected at a wider scope (e.g. coin flips of multiple
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coins from the same factory, versus coin flips from a single coin). We shall draw on these

principles in order to generalize our framework to the three levels of abstraction.

3.2.3 Bayesian Theory of Mind

Bayesian modeling has been used to account for a wide variety of cognitive functions,

including object perception (Kersten & Yuille 2003), prediction of object trajectories

(Weiss & Adelson 1998), visual feature inference (Griffiths & Austerweil 2009), and word

learning (Xu & Tennebaum 2007). More recently, Bayesian models have been applied to

mental inference and ToM tasks (e.g. Baker et al 2009, Baker et al 2011, Hamlin et al

2013). These models use the same three basic components described above: a hypothesis

space of generative models, a prior distribution over hypothesis, and the application of

Bayes’ Theorem.

To quickly illustrate the core components of Bayesian ToM, consider a simple

example in which actors navigate a two-dimensional grid world. Figure 3.2.3 illustrates a

simple generative model that an observer might posit to explain an actor’s behavior in

such an environment.

According to the generative process posited by this observer, the actor’s behavior at

time t is determined by the actor’s goal state g, the layout S of the current grid

environment, and the actor’s physical state (i.e. location) at time t. The actor’s goal

distribution is determined by the set of feasible goals in the current grid environment,

and a bias parameter b specific to the actor. The observer can use this model to infer the

actor’s current goal, given a partial observation of the actor’s behavior. Suppose, for

example, that we observe the actor’s first action a0 (in addition to the grid layout S and

the actor’s initial location x0). The observer can infer a posterior distribution over the

44



xt

at

g

b

S

xt+1

Legend  

S: persistent features of environment (grid) 
g: actor’s mental state (goal) 
b: goal bias parameter 
at: action at step t 
xt: actor’s physical state (location) at step t

Figure 3.2.3: Simplified “rational planning model” (Baker et al 2009). Solid borders denote
observable variables, dotted borders denote posited hidden states, and no borders denote
parameter variables. We use dynamic graph notation to save space

actor’s current goal by applying Bayes’ Rule

P (g|S, x0, a0) ∝ P (a0|S, x0, g)P (g)

The first term P (a0|S, x0, g) denotes the probability that the actor would take action a0

in that initial state, given that the actor’s goal is equal to g. This term appears in the

Markov Factorization of the model in figure 3.2.3, and therefore corresponds to a

parameter table in the observer’s generative model. In this case, we use a simplified

“rational planning model” (Baker et al 2009) in which the actor follows a shortest path

to the goal state (up to some probability of error). The second term, P (g), corresponds

to the bias parameter b. Thus, an observer with a fully parameterized generative model

can compute the probability that the actor has a particular goal in mind when choosing

action a0 from initial state S0 = (S, x0). The observer can also use this model to directly
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predict future behavior by marginalizing out the psychological states, according to the

equation

P (a1|S0, a0) =
∑

g

P (a1|S0, a0, g)P (g|S0, a0)

where P (g|S0, a0) is the posterior probability from the previous equation.

This illustrates the basic components of the Bayesian ToM (BToM) approach: a

parameterized generative model for simulating the actor’s behavior, which can be

manipulated via Bayesian inference to reason about an actor’s behavior and

psychological states. We will draw heavily on the BToM approach to construct Level 1 of

our framework. We then draw on the principles of Hierarchical Bayesian Models to

generalize this for inference at higher levels of abstraction.

3.2.4 Probabilistic Programs

Thus far, our discussion has mostly been framed at the computational level of analysis.

That is, we have discussed the kinds of problems that our observer will need to solve (i.e.

the structure of the data and inferences), but not the actual procedures or algorithms

that the observer will use to solve these problems. Much of the literature on Bayesian

cognitive modeling is focused on the computational level, though as we explain in the

next section, some of our questions of interest will depend on interactions between

algorithmic-level constraints (e.g. the observer’s representational resources and their

capacity to manipulate those representations) and computational-level performance. For

this reason, we define our framework using the formal machinery of functional

probabilistic programming languages (PPLs), which are useful for exposing these sorts of

interactions between different levels of analysis, and have been proposed as a natural way
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to model “reasoning about reasoning” (Stuhlmuller & Goodman 2016). Here we provide

a brief primer on three core components of PPLs which are conceptually important for

our framework.12

The first core component is a set of stochastic primitive functions. For example, the

stochastic primitive function flip(w) returns a 1 with probability w or a 0 with

probability 1− w. We can compose stochastic primitives to define more complex

probabilistic programs. For example, the program below simulates n coin flips with

weight w, then returns the total number of successes.

var nF lips =function(n,w){
var outcomes = repeat(n, flip(w))
return sum(outcomes)

}

This program constitutes a procedure for generating samples from a probability

distribution, parameterized by its inputs (in this case, a Binomial(n,w) distribution).

Alternatively, we can view the program as inducing a mapping from inputs to

distributions over outputs, although this distribution is only implicit in the return values

of this program. However, we can transform a procedure for generating samples from a

distribution into an explicit distribution object using the second core component: a

marginalization operator. In the language we use (WebPPL), this is the Infer operator.

Consider the following modification to the previous program:

12See appendix A for a more detailed explanation of PPLs
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var nF lipsDist =function(n,w){
return Infer(function(){

var outcomes = repeat(n, flip(w))
return sum(outcomes)

})
}

A call to the first program- nF lips(n,w)- returns a sample drawn from a

Binomial(n,w) distribution, whereas a call to the second program-

nF lipsDist(n,w)-returns a Binomial(n,w) distribution object, which we can then query

with built-in functions; e.g. if we define Dist = nF lipsDist(n,w), we can use

sample(Dist) to draw a sample from this distribution, or Dist.score(x) to compute the

log-likelihood of observing x under this distribution.

The final core component is an operator for conditioning on observations: WebPPL

provides several such operators, the most straightforward of which is Condition(A),

where A is boolean. Including a line of this form inside the scope of an Infer

statement13 conditions the resulting distribution on the observation that proposition A is

true. For example, consider the following modification to nF lipsDist:

var nF lipsDist =function(n,w, obsNum, obsV al){
return Infer(function(){

var outcomes = repeat(n, flip(w))
Condition(outcomes[obsNum] == obsV al)
return sum(outcomes)

}

This function requires two additional inputs: obsNum (an integer < n), and obsV al

13Condition statements have no effect outside the scope of an Infer statement
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(boolean). The line Condition(outcomes[obsNum] == obsV al) adds the condition that

flip obsNum resulted in outcome obsV al. Intuitively, we can understand how this

program works in terms of rejection sampling:14 The Infer operator repeatedly runs the

generative model inside it, and rejects any sample which violates the statement in

Condition. It then computes the empirical distribution of the requested value within the

population of accepted samples. Thus, a call to nF lipsDist(10, .5, 1, H) returns a

distribution over total number of successes in 10 flips, given that the first flip was a

success.

These three core components- stochastic primitives, a marginalization operator, and

a conditioning operator- will allow us to compactly define complex hierarchical models

and generalized procedures for inference over those models.

3.3 Level 1: details

3.3.1 Level 1 data and inference tasks

Intuitively, Level 1 corresponds to reasoning about a particular instance of a particular

actor’s behavior. To represent the data involved in Level 1 reasoning, we shall use

Markov Decision Process (MDP) notation. Formally, each episode takes place in an

MDP system {S, states toActs, T ), where

1. S is the set of possible system states. We use st to denote the set of all relevant

observable features of the system at time t. For detailed analysis, it may be useful

to further demarcate st into individual feature variables (e.g. f it for the value of the

14Though rejection sampling is generally intractable, WebPPL includes several more

efficient inference methods. See Appendix A for more details
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ith feature at time t), or to distinguish between the observable environment state

(e.g. layout of the room) and the observable actor state (e.g. the actor’s current

location in the room). For this explanation, however, we use st to denote a

complete description of the (observable) system-state at time t.

2. states toActs : S → P(A) is a function mapping a system state s to the set of

possible actions that are feasible from that state.

3. T : S × A→ S is a state transition function, i.e. T (s, a) is the new state resulting

from taking action a in state s.15

For now, we shall assume that the observer has full knowledge of S, states toActs, and

T , which we can think of as encapsulating the “intuitive physics” of the system. To help

illustrate our framework, we provide a simple two-dimensional “gridworld” environment

that we refer to throughout this section. An example system state for such an

environment is shown in figure 3.3.1:

In this case, the system state st consists of three features: the grid layout of the

environment (i.e. locations of any objects and features), the location of the actor, and

the actor’s “inventory,” which contains any objects the actor is currently holding. For

this example, we define A = {‘up’, ‘down’, ‘left’, ‘right’, ‘pickup’}: the first four actions

denote movement by one cell in the corresponding direction, and the ‘pickup’ action adds

any objects in the actor’s current location to the actor’s inventory.

15Generally, the state transition function may be probabilistic, in which case T (s, a) is

a distribution over possible next states. We will only consider systems with deterministic

transition functions for now
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Figure 3.3.1: Toy MDP system which we shall use to illustrate the core components of
our formal framework. Black squares denote walls, which cannot be traversed or occupied

The data for a Level 1 problem comprise a (possibly incomplete) observation of a

single episode. We use d = {obs1, . . . , obsn} to denote a trial observation, where each

obsi = (varit, val
i
t) consists of an observable feature variable varit (either a state variable

or action variable), and an observed value for that variable. An example of a trial

observation for the example system above is shown in figure 3.3.2. Using the notation

just defined, we can represent this trial observation as

d = {(state0, s0), (act0, ‘left’), (state1, s1), . . .}

Now that we have characterized the data involved in Level 1 problems, we can define

the inference tasks. Intuitively, a Level 1 problem involves two tasks, which are usually

solved contemporaneously and dynamically as the episode elapses. The first task is to

infer a “trial explanation” of the data, which we define in the next section. The second

task is to manipulate this explanation to reason about the ongoing episode. Before
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Figure 3.3.2: Example of a full trial observation in a grid world system

providing a formal characterization of the “trial explanation,” we provide an intuitive

explanation of what sorts of manipulations the observer will need to perform.

To this end, we distinguish between four kinds of Level 1 reasoning:

1. Action prediction: for example, if we restrict the data to the first state-action-state

sequence of the episode shown in figure 5, the observer might need to predict the

actor’s next action, given their behavior so far.

2. Mental inference: this involves inferring the values of hidden psychological states

attributed to the actor under the observer’s psychological explanation. For

example, if the observer’s explanation includes a notion of rational goal-seeking

behavior, the observer may need to infer the actor’s goal from a few steps of the

actor’s behavior. Note that the structure and content of the observer’s explanation

constrains which mental inferences the observer can perform, e.g. an observer who

does not attribute beliefs to actors obviously cannot infer beliefs.

3. Control reasoning: this is only applicable in cases where the observer can intervene

on the system (either the environment or the actor), and the observer must

determine a sequence of interventions for inducing some target behavior in the
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actor. For example, if the observer can remove or relocate one of the two “treats”

shown in figure 4, the observer may reason about how to control the actor’s

movement through a sequence of such interventions.

4. Counterfactual reasoning: this can encompass any of the previous types of

reasoning, and involves the same mathematical operations, but is performed on

“counterfactual” data. For example, the observer might wonder what the actor’s

first move would have been if the treat in the top left corner had been an apple

instead of a cookie.

We define the observer’s trial explanation as a type of probabilistic generative model

which can be manipulated to perform Level 1 reasoning. A psychological explanation is a

type of trial explanation with certain distinguishing features, which we expand on in the

next section. For this paper, we shall focus on the first two types of reasoning for Level

1, though we can generalize this to counterfactual and control reasoning with minor

augmentations to the model definitions.

3.3.2 Level 1: Inferring and reasoning with psychological explanations

Here we provide a formal definition of “trial explanation,” illustrate how they can be

manipulated to reason about an ongoing episode, and illustrate how an observer can

both infer and manipulate this explanation contemporaneously using functional

probabilistic programs.

To this end, let d = {obs1, . . . , obsn} be a (possibly incomplete) trial observation for

some MDP system {S, states toActs, T ). Let V be the set of trial variables occurring in
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this observation, i.e.

V = {varit|(varit, valit) ∈ d for some value of valit}

Let D denote the set of all possible completions of d attainable in this system; i.e. the

set of all complete trials consistent with the observations in d (if d is a complete trial

observation, then D will be the singleton set containing d). A trial explanation of d is a

type of probabilistic generative model, consisting of:

1. A variable set X which contains V . We use U to denote X\V . If U = ∅, the

explanation is “non-psychological”16

2. A binary dependence relation R ⊂ X × X . For a variable x ∈ X , we use Par(x) to

denote the parents of X , i.e. Par(x) = {y ∈ X |R(y, x)}.

3. For each variable x ∈ X , a probabilistic program fx(Par(x); θx) with inputs in

Par(x) and parameter vector θx.

Together, these components define a joint probability distribution which factors

according to the equation below:

P (X|d) =
∏

x∈X
P (x|Par(x), d) (3.3)

Note that, by definition, the distribution P (X|d) only has support on configurations of

X in which all observed variables have values consistent with those in d. If d is a

16though the converse is not true: as we explain in section 3.5.3, U 6= ∅ does not

necessarily imply that the explanation is psychological
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complete trial observation, we may write this as P (U|d), to reflect that the relevant set

of possibilities only varies over values of unobserved variables (i.e. those posited by the

observer). If d is an incomplete trial observation, we instead write P (U , D) to denote

that the relevant set of possibilities varies over possible completions of the trial and

values of unobserved variables.

Before we explain this in more detail, it is important to note that equation 3.3 is the

standard Markov factorization for causal graphical models. Indeed, a trial explanation

can be interpreted as a type of augmented Causal Graphical Model (CGM), which we

refer to as a Causal Process Model (CPM). The distinguishing feature of a CPM is that

the functional and probabilistic relations between variables specify additional

information at the algorithmic level of analysis, beyond the computational level. That is,

a CGM specifies the causal relations between variables, and the conditional probabilities

P (x|Par(x), θx), but is agnostic about the underlying processes or mechanisms that give

rise to these probabilities. A CPM specifies additional, algorithmic-level information

about a procedure generating samples from the distribution P (x|Par(x), θx). As we

explain more thoroughly in Chapter 5, this extra level of information will be highly

relevant for addressing our questions of interest.17

Intuitively, the induced distribution corresponds to the “computational-level”

17Also noteworthy is that the algorithmic-level information in a CPM can be “marginal-

ized out” to obtain the corresponding CGM. This marginalization does not affect the

probabilities. Conversely, each CGM can be associated with a “default” CPM by sim-

ply defining each program to draw samples from the appropriate categorical distribution.

Thus, each CPM corresponds to a single CGM, but a single CGM may be realized via

many CPMs
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interpretation of the observer’s trial explanation, while the model itself specifies

additional algorithmic-level properties. That is, the factorized distribution captures the

relational and functional structure among variables, while the model specifies the

processes that mediate these relations. We can encode this model as a single program

f(queries), where queries consists of any variable names in X , and a call to f(queries)

returns a single sample from the distribution P (queries|d). To better illustrate this

construction, and how it can be used to perform Level 1 reasoning, consider the partial

trial observation shown in figure 3.3.3.

s0 s1 s2 s3a0

“Left” “Up”

a1

“Right”

a2

Figure 3.3.3: Partial trial observation. We assume that the actor cannot backtrack to
previously occupied locations. Faded lines indicate the actor’s path thus far

For this example, we shall assume that the system prevents “backtracking” (i.e. the

actor may not move to the same location they were in previously), that the trial ends

once the actor reaches and picks up either the muffin or the cookie, and that actors will

not “back themselves into a corner” (i.e. will not enter a state that leaves them with no

available actions, unless it is a terminal state). Under these assumptions, it is

straightforward to compute the set of possible completions of this partial trial (figure

3.3.4).

Figures 3.3.5 and 3.3.6 illustrate two possible trial explanations for this partial
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s0 s1 s2 s3a0 a1 a2

“up”

“right”

“muffin”

“muffin”

“cookie”

Figure 3.3.4: Possible completions of the partial trial in figure 3.3.3, consistent with system
constraints

trial.18 According to the explanation in figure 3.3.5, the actor’s movement at time t is

determined by the current system state st, a binary goal state which is persistent

throughout the episode, and an error parameter ε. At each step, the actor follows a

shortest path from their current location to the goal object (0 =‘cookie’, 1=‘muffin’)

with probability 1− ε, but has an ε chance of making an error (choosing another move

randomly). The actor’s preference between cookies and muffins is captured by the

preference parameter β: for a fixed value of β, the actor’s goal is drawn at the start of

the episode from a Bernoulli(β) distribution. The explanation in figure 3.3.6 is similar,

with two important differences. First, under this explanation, the actor will always

follow a shortest path toward the current goal object (i.e. ε = 0). Second, the goal

variable is not fixed throughout the episode, but has chance ν to be randomly

re-sampled in each step, from the same prior parameterized by β. Intuitively, the first

model encodes the explanation that the actor has the same goal object in mind

throughout the episode, but makes a “mistake” en route to that object, while the second

model encodes the explanation that the actor never makes a mistake (given their current

goal), but changes their goal mid-trial.

18We use a condensed, intuitive psuedocode to illustrate programs in these figures
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provides several such operators, the most straightforward of which is Condition(A),

where A is boolean. Including a line of this form inside the scope of an Infer statement5

conditions the resulting distribution on the observation that proposition A is true. For

example, consider the following modification to nF lipsDist:

var nF lipsDist =function(n, w, obsNum, obsV al){
return Infer(function(){

var outcomes = repeat(n, flip(w))
Condition(outcomes[obsNum] == obsV al)
return sum(outcomes)

}

This function requires two additional inputs: obsNum (an integer < n), and obsV al

(boolean). The Condition(outcomes[obsNum] == obsV al) adds the condition that flip

obsNum resulted in outcome obsV al. Thus, a call to nF lipsDist(10, .5, 1, ‘H 0) returns a

distribution over total number of successes in 10 flips, given that the first flip was a

success.

These three core components- stochastic primitives, a marginalization operator, and

a conditioning operator- will allow us to compactly define complex hierarchical models

and generalized procedures for inference over those models.

✏ � ⌫

5Condition statements have no e↵ect outside the scope of an Infer statement
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Model

Programs

Figure 3.3.5: An “error-prone fixed-goal” explanation of the partial trial in figure 3.3.3.
Note that the syntax A?B : C corresponds to “if A then B otherwise C”

Importantly, a trial explanation is not a static description of “what happens” in the

trial, but a dynamic model that can be manipulated to reason, via simulation, about the

actor’s past, present, possible future, and counterfactually possible behavior. This is

closely related to the idea that human beings can reason about counterfactuals and

causal relations by “mentally simulating” hidden or counterfactual events according to a

generative model (Gerstenberg et al 2014).

To illustrate how this manipulation works, consider an observer who infers the first

(error-prone fixed-goal) explanation. Under this interpretation, the actor must have

made a mistake, either in the first move (if g = Cookie) or the third (if g = Muffin).

The observer can manipulate their explanation to estimate the probability of each

possibility. On a computational level, this requires manipulating the joint probability
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fg(�, ⌫, gPrev) = (flip(⌫) k gPrev ==undefined)? flip(�) : gPrev

fa(g, s) =shortestPath(s, g)

15

…

Figure 3.3.6: A “deterministic-action mind-change” explanation of the partial trial in
figure 3.3.3

distribution induced by the explanation using Bayes’ Rule, i.e.

P (g = C|d) ∝ P (d|g = C)P (g = C) =

(∏

obs∈d
P (obs|g = C)

)
β

Note that P (g = C) is equal to parameter β (which is learned via Level 2 inference), and

each term P (obs|g = C) is equal to the distribution over return values induced by fa.

Similarly, the observer can predict the actor’s next move by marginalizing out the goal

states, i.e.

P (a3|d) = P (a3|d, g = C)P (g = C|d) + P (a3|d, g = M)P (g = M |d)

where the posterior goal probabilities P (g|d) are computed according to the previous

equation.

On an algorithmic level, the observer’s explanation is defined in terms of an “actor
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model,” which is inferred via Level 2 inference. We shall explain the actor model in

greater detail in the next section, but for now, we can define it as a recursive loop for

generating simulated trials, where each iteration executes the following three programs

(in order)

1. uf(s,m, θu) takes the current system-state s, the actor’s current mental state m,

and a parameter vector θu, and returns an updated mental state m′

2. af(s,m, θa) takes a current system-state s, the actor’s current mental state m, and

a parameter vector θa and returns an action a

3. T (s, a) computes the next system state via the system’s transition function. If this

is a terminal state (defined by either the system constraints19 or by the actor’s goal

state), then the recursion halts, and the function returns a fully specified trial

(including values for all hidden variables in the model). Otherwise, the recursive

function is applied to the next state.

If we let actorModel() denote the functional PP that executes this recursive loop and

outputs a complete trial, we can use the PPL’s Infer and Condition operators to

compute the distribution P (query|d, actorModel), where query is any set of variables

not observed in the data. The general form for this is20

19E.g., most systems will have a “maximum number of actions” cap after which the trial

ends
20While this form is theoretically sound and intuitively clear, it is generally intractable

outside of simple cases. See Appendix B for full specification of the actual programs
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var Level1 Inference =function(data, query, actorModel){
return Infer(function(){

var trial = actorModel()
Condition(checkData(trial, data))
return getQuery(query, trial)

})
}

Intuitively, the code inside the Infer operator first generates a simulated trial by

running the actorModel program. The helper function checkData(trial, data) returns

‘true’ if the trial is consistent with the observations in data, and ‘false’ otherwise. The

Condition statement therefore conditions the distribution on the observed data. Finally,

the helper function getQuery extracts the values of all variables requested in query

(recall that the trial returned by actorModel() includes values for posited hidden

variables, so query may include requests for the actor’s mental states). Thus, a call to

this program returns an object encoding the distribution P (query|data, actorModel).

Furthermore, this general form allows the observer to update their explanation

dynamically as new observations arrive, by adding new observations to the input for the

data argument. We illustrate this dynamic updating in figure 3.3.7, using the partial

trial shown in figure 3.3.3 and an “error-prone fixed-goal” actor model.

To summarize: for a fixed trial observation d and actor model A, the observer’s trial

explanation of d can be characterized at both the computational and algorithmic levels

of analysis. At the algorithmic level, the explanation is the program

f(queries) = Level1 Inference(d, queries, A). At the computational level, the

explanation is the mapping from queries to probability distributions induced by this

program (alternatively, we can define it as the full joint probability distribution
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Figure 3.3.7: A illustration of how the observer dynamically updates their explanation
as an episode elapses. Each chart depicts the posterior distribution over the actor’s goal
(according to the observer’s actor model) after observing the corresponding trial step. The
first chart depicts the prior distribution, as it is conditioned on no action observations.
The next two observations significantly increase the posterior probability that the actor
is targeting the cookie. After the next observation, however, this posterior probability of
g = C sharply decreases (to reflect that the actor may have been targeting the muffin all
along, but made a mistake in their first action) and the posterior probability of g = M
increases

P (U , D|d), from which we can obtain the query distributions by marginalizing out

non-queried variables).

3.4 Level 2: details

3.4.1 Actor models

A Level 2 problem involves inferring the actor-specific template which constrains Level 1

reasoning. Intuitively, an actor model captures the (observer’s hypothesis about the)

actor’s values, preferences, cognitive constraints, and behavioral dispositions in an

abstract representation (i.e. without reference to trial- or system-specific features).

Formally, an actor model M = {H, af, uf, θ} consists of
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1. A set of “mental variables” H = {(h1, type(h1)), . . . , (hn, type(h1))}, where type(h)

specifies the type (domain) of h. We refer to a single configuration of H as the

actor’s (hypothesized) ‘mental state.’ The allowable variable types (and the

allowable number of variables of each type) are specified by the observer’s Level 3

framework theory. For now, we shall consider the following variable types:

• Discrete (DIS) variables take values in {1, . . . , n}.

• Continuous (CON) variables take values in Rn, and are typically reserved for

parameters.

• Symbolic (SYM) variables serve as pointers to possible features in the

environment. Each SYM variable X is associated with a primitive comparison

function X(s, v), where s is a system state and v is a possible value of X.

This function returns true if state s includes the feature v that X “points to,”

and false otherwise. For example, we can define the goal “get a cookie” using

a SYM variable which returns true in any state where the actor possesses a

cookie, and false otherwise. If an actor model includes a SYM variable, the

observer may use the associated primitive function in constructing the

programs for that model. We use SYM-L to denote a list of SYM variables.

• Representational (REP) variables take values in some space of representations

of the world. These representations inherit their structure from the observer’s

MDP representation of the world itself. The value of a REP variable can be

interpreted as a set of possible (or counterfactually possible) world states. For

example, the observer could represent an actor’s uncertainty about the

current environment using a REP variable which captures the set of possible
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world states compatible with what the actor has already observed so far.

Usually, we can compactly encode this using an “underspecified” world state,

by taking the same feature structure we use in the MDP representation of the

world, and adding a marker for “missing” feature values (corresponding to

those parts of the world the actor is not aware of).

• Valuative (VAL) variables denote value functions. The domain of a VAL

variable may be any combination of observable states (e.g. system states,

actions, sequences of actions, etc.). For example, a more complex rational

action model may encode the actor’s goals using a VAL variable whose values

are utility functions over states of the world.21

In addition to types, each variable is assigned a temporal signature which specifies

the scope of its persistence. Allowable temporal signatures are

• t, where xt denotes that the value of x is specific to the current trial iteration,

• 0, T , where x0 denotes a feature specific to the initial state of a trial, and xT

denotes a feature specific to the final state of the trial,

• (no subscript), where x denotes an actor feature/parameter that is persistent

across the trial

2. An update function uf(system, state,H; Θu), with parameters in Θu. This is a

probabilistic program which accepts as inputs a system definition, a state value

21Technically we can encode SYM and REP variables as VAL variables, but it will be

conceptually and notationally convenient to distinguish between the three
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within that system, and a current mental state, and returns an updated mental

state. If the H argument is empty, uf returns an initial mental state.

3. An action function af(system, state,H; Θa), with parameters in Θa. This is a

probabilistic program which accepts as inputs a system definition, a state value

within that system, and a current mental state, and returns an action within that

system22

4. A parameter vector θ = {θu, θa}, where θa ∈ Θa and θu ∈ Θu.

The structure(s) and parameter space(s)23 of the actor model are determined by the

observer’s Level 3 framework theory.

An actor model M = {H, uf, af, θ} consists of these four components. Importantly,

note that these components are not quite sufficient to specify a generative model, as they

are defined without reference to trial-specific observations (i.e. they do not contain

variables corresponding to actual observations). Rather, an actor model provides the

“ingredients” necessary to construct a generative model of a particular trial, by

associating each observed state and action variable with the generative functions defined

above. To illustrate this, we provide and explain three simple examples of actor models

22We shall assume that the observer knows states toActs and T for any system in which

they have data
23The Level 3 theory may either specify a) a single model structure (and its correspond-

ing parameter space) and a prior over that parameter space, or b) a set of possible model

structures (and their corresponding parameter spaces), a prior over model structures, and

a prior over each possible parameter space. We illustrate both kinds of inference in the

next section
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(programs are shown in a highly condensed, intuitive psuedocode), as well as a

condensed graphical representation of each model structure.

st at

g

psychological explanation of d can be characterized at both the computational and

algorithmic levels of analysis. At the algorithmic level, the explanation is the program

f(queries) = Level1 Inference(d, queries, A). At the computational level, the

explanation is the set of probability distributions that this program returns

(alternatively, we can define it as the full joint probability distribution P (U , D|d), from

which we can obtain the query distributions by marginalizing out non-queried variables).

4 Level 2: details

4.1 Level 2 data and inference tasks

4.2 Actor models

Noisy goal-seeker

M : {(g, SY MB)}

var uf(m, s) = {
return (flip(⌫) : m ==undefined?) categorical(vals: objects(s), probs: �) : m

}

var af(m, s) = {
return shortestPath(m.g, s)

}

⇥ = {�, ⌫}
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Figure 3.3.7: A illustration of how the observer dynamically updates their explanation
as an episode elapses. Each chart depicts the posterior distribution over the actor’s goal
(according to the observer’s actor model) after observing the corresponding trial step. The
first chart depicts the prior distribution, as it is conditioned on no action observations.
The next two observations significantly increase the posterior probability that the actor
is targeting the cookie. After the next observation, however, this posterior probability of
g = C sharply decreases (to reflect that the actor may have been targeting the mu�n all
along, but made a mistake in their first action) and the posterior probability of g = M
increases

f(queries) = Level1 Inference(d, queries, A). At the computational level, the

explanation is the mapping from queries to probability distributions induced by this

program (alternatively, we can define it as the full joint probability distribution

P (U , D|d), from which we can obtain the query distributions by marginalizing out

non-queried variables).

M : {(g, SY M)}

M : {(g, SY M), (b, SY M � L)}
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Figure 3.4.1: “error-prone fixed-goal” actor model

Figure 3.4.1 depicts the actor model used to construct the trial explanation in figure

3.3.5. This model includes a single mental state variable g, which points to a single

possible feature in the environment. According to this actor model, the variable g is

sampled at the start of the trial, and its value is persistent throughout the trial. The

distribution from which g is sampled corresponds to a categorical distribution over

accessible objects from the trial’s initial state (objects(s0)), with probabilities

determined by the actor’s preference parameter vector β (renormalized to outcomes in

objects(s0)). The helper function shortestPath(m.g, s)24 computes the shortest path

from the current system state s to any state in which the goal feature m.g is satisfied,

and returns the first step of that path (if the goal feature is satisfied in the current state,

shortestPath returns a terminal action which ends the trial). However, this actor model

is “error prone:” the action function af returns an optimal action with probability 1− ε,
24We can code the shortestPath function in a system-general way by including T and

states toActs as inputs to the function
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or a random action with probability ε.
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Figure 3.3.7: A illustration of how the observer dynamically updates their explanation
as an episode elapses. Each chart depicts the posterior distribution over the actor’s goal
(according to the observer’s actor model) after observing the corresponding trial step. The
first chart depicts the prior distribution, as it is conditioned on no action observations.
The next two observations significantly increase the posterior probability that the actor
is targeting the cookie. After the next observation, however, this posterior probability of
g = C sharply decreases (to reflect that the actor may have been targeting the mu�n all
along, but made a mistake in their first action) and the posterior probability of g = M
increases

f(queries) = Level1 Inference(d, queries, A). At the computational level, the

explanation is the mapping from queries to probability distributions induced by this

program (alternatively, we can define it as the full joint probability distribution

P (U , D|d), from which we can obtain the query distributions by marginalizing out

non-queried variables).
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Figure 3.4.2: “Mind-change” actor model

Figure 3.4.2 depicts the actor model used to construct the trial explanation in figure

3.3.6. Like the previous model, this includes a single mental state variable pointing to a

single feature in the environment. Unlike the previous model, the goal feature is not

persistent throughout the episode, but may be resampled with probability ν each time

the mental state is updated. This also differs from the previous model in that this actor

is not error prone (i.e. will always output an optimal action for the current goal).
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Figure 3.3.7: A illustration of how the observer dynamically updates their explanation
as an episode elapses. Each chart depicts the posterior distribution over the actor’s goal
(according to the observer’s actor model) after observing the corresponding trial step. The
first chart depicts the prior distribution, as it is conditioned on no action observations.
The next two observations significantly increase the posterior probability that the actor
is targeting the cookie. After the next observation, however, this posterior probability of
g = C sharply decreases (to reflect that the actor may have been targeting the mu�n all
along, but made a mistake in their first action) and the posterior probability of g = M
increases

f(queries) = Level1 Inference(d, queries, A). At the computational level, the

explanation is the mapping from queries to probability distributions induced by this

program (alternatively, we can define it as the full joint probability distribution

P (U , D|d), from which we can obtain the query distributions by marginalizing out

non-queried variables).

M : {(g, SY M)}

M : {(g, SY M), (b, SY M -L)}
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Figure 3.4.3: “awareness-constrained” actor model

The model in figure 3.4.3 includes a second mental state variable b, which tracks the
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actor’s “awareness” state and has type SYM-L (i.e. a list of symbolic pointers). Under

this model, the update function first updates the actor’s awareness state to the current

system state. This involves a “line of sight” function which scans the actor’s line of sight

and constructs a pointer for each object that is encountered, which is then added to the

list of pointers in m.b (i.e. the full list of objects that the actor has previously

encountered). If this list is changed in the process (i.e. if the actor encounters a new

object), the actor resamples their goal state from among those features in the actor’s

current awareness state (i.e. chooses a goal object from among those known to be in the

environment). The line of sight function includes a “range” parameter, which determines

how far the actor’s line of sight extends.

3.4.2 Inferring an actor model

A Level 2 problem involves inferring an actor model for a particular actor. The data

consist of multiple trials involving that particular agent, and may span across multiple

systems. Figure 3.4.4 shows an example of such a data set, including two trials from

different grid world systems, and a third trial from a distinct “vending machine” system.

In addition to the data, the other input for Level 2 inference is the actor’s framework

theory, which we can characterize as a prior distribution P (M) over possible actor

models. The set and types of possibilities over which this prior distribution ranges is

determined by the scope of the problem and depth of the observer’s background

knowledge, but the support of P (M) will have one of the following types:

• A set of possible model structures (i.e. the mental variables and unparameterized

forms for af and uf), a prior distribution over model structures, and a prior
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Figure 3.4.4: Example of cross-trial data for a single actor

distribution over the parameter space for each structure. Depending on the

observer’s background knowledge, this may be a rich set of possible structures, or a

handful of specific structures, or a single feature of a structure that is otherwise

fixed.

• A set of parameterizations for a single model structure (for some or all of the

model’s parameters)

For example, if the observer believes that all actors behave according to the same set of

programs, but differ in terms of the parameter values for these programs, then the

observer’s Level 2 inference will involve inferring parameter values only. If the observer

believes that actors are varied in their cognitive constraints (e.g. some actors engage in

complex planning, others act impulsively on basic drives; some actors can see through

walls, others cannot, etc.), then their Level 2 inference problem will involve both
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identifying the structural constraints (i.e. mental variables and program forms) and the

parameter values for that model. In the next section, we elaborate on how to construct

and infer these prior distributions. For now, we shall consider two simple examples, one

of each type.

For the first example, suppose our observer’s framework theory includes a single

model structure corresponding to the“error-prone fixed-goal” model in figure 3.4.1. This

model has parameters θ = {β, ε}, where

• β is an n× 1 parameter vector encoding the value that the actor would derive from

obtaining each of n possible outcomes. In the uf function for this model, the

vector β is restricted to include only those values corresponding to outcomes which

are attainable in the current system. Let outcomes(s) denote the set of possible

outcomes attainable from system-state s, and βs = {βi ∈ β|i ∈ outcomes(s)} (i.e.

the parameter values associated with attainable outcomes). Intuitively, the values

in βs encode the likelihood that the actor will choose any one particular outcome

from those attainable in the current system (though in general, the exact function

that translates these values into action probabilities depends on the actor model).

• ε ∈ (0, .5) is an error parameter, which encodes the probability that the actor will

make a mistake (i.e. choose a suboptimal action).

In this case, the observer’s framework theory P (M) (prior distribution over models) can

be written as P (θ) = P (β, ε), since P (M) assigns all probability mass to a single model

structure with parameters β and ε. Similarly, since the framework theory fully specifies

the model structure, the problem of inferring an actor model only involves inferring the

values of β and ε.
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To illustrate how this inference works, let D = {d1, . . . , dn} be a set of trial

observations for this particular actor. In order to infer the parameter values, the

observer must compute the posterior distribution P (θ|D,M),25 where M denotes the

fixed model structure determined by the framework theory. On a computational level,

this can be done via Bayes’ rule:

P (θ|D,M) ∝ P (D|θ,M)P (θ) (3.4)

The second term on the right hand side P (θ) is given by the observer’s framework theory.

The first term is the data likelihood. Because each trial is conditionally independent of

each other trial (conditioned on the actor model), this term decomposes into

P (D|θ,M) =
n∏

i=1

P (di|θ,M)

and each P (di|θ,M) decomposes into a product of terms of the form P (obsij|θ,M), where

obsij denotes the actor’s jth action in the ith trial. In order to compute each

P (obsij|θ,M), the observer must marginalize out the hidden states in H (or approximate

this marginalization with a single MaP estimate for each hidden state). In this case there

is only one hidden variable g with values in outcomes(sij), so the computation reduces to

P (obsij|θ,M) =
∑

v∈outcomes(sij)
P (obsij|θ,M, g = v)P (g = v|θ,M)

The action probability P (obsij|θ,M, g = v) is given by the action function af , and the

25or a Maximum a Posteriori (MaP) estimate
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prior probability P (g = v|θ,M) is given by the corresponding entry in parameter β.

On an algorithmic level, the observer can perform this computation using the

following program form.26

var Level2 paramInference =function(data, theory){
return Infer(function(){

var θ = sample(theory.prior)
var actorModel = extend(theory.structure, θ)
var observeTrial =function(trial){

var simTrial = actorModel(trial[0])
Condition(simTrial == trial)

}
map(observeTrial, data)
return θ

})
}

The theory input contains the observer’s framework theory, which in this case consists

of a single model structure theory.structure and a prior distribution theory.prior. The

model inside this Infer operator first generates a value of θ by sampling from the prior,

then creates the corresponding actor model via extend(theory.structure, θ), which fills in

the missing parameter values with the newly sampled θ. The function observeTrial(t)

generates a simulated trial using the same initial state as trial t, then adds the condition

that this simulated trial is identical to the observed trial. The map(f, v) operator applies

a function f to each element of vector v, so map(observeTrial, data) applies

observeTrial to each trial in data, thereby conditioning the distribution on observing all

of the data. If we let T = {M,P (θ)} denote the observer’s framework theory, then a call

26This pseudoprogram is theoretically sound and conceptually clear, but generally in-

tractable. See appendix B for the actual program and details on how to make it tractable
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to Level2 paramInference(D,T ) returns a distribution object corresponding to the

posterior distribution over actor models P (θ|D,T ). Note that the hidden-state

marginalization is performed implicitly by actorModel(), which returns a complete trial

including simulated values for all hidden variables in the model.

Now, suppose that the observer’s framework theory includes two model structures M1

and M2, corresponding to the actor models shown in figures 3.4.2 (“mind-change”) and

3.4.3 (“awareness-constrained”). Note that these models induce different parameter

spaces: θ1 = (β, ν), where ν ∈ (0, 1) is the actor’s “fickleness” parameter, and θ2 = (β, ρ),

where ρ > 0 is the actor’s visual range parameter. In this case, the observer’s framework

theory P (M) can be written as

P (M) = P (M, θ) = P (M)P (θM)

where P (M) is the prior probability of a particular model structure, and P (θM) is a

prior distribution over the parameter space associated with model structure M .

On a computational level, the observer’s inference problem takes the same form as

before (equation 3.4), but the inference and prior now range over (M, θ) instead of just θ:

P (M, θ|D) ∝ P (D|M, θ)P (M, θ) =
n∏

i=1

P (di|M, θ)P (M)P (θM) (3.5)

The term on the right hand side requires the same series of computations as in the

previous example (where the observer was only inferring the parameter value), but this

computation is performed for each possible model structure and scaled by the structure

prior P (M).
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On an algorithmic level, the observer can perform this computation by modifying the

previous program form:

var Level2 structureInference =function(data, theory){
return Infer(function(){

var modelStructure = sample(theory.structurePrior)
var θ = sample(theory.paramPriors[modelStructure])
var actorModel = extend(modelStructure, θ)
var observeTrial =function(trial){

var simTrial = actorModel(trial[0])
Condition(simTrial == trial)

}
map(observeTrial, data)
return θ,modelStructure

})
}

In this case, the theory input consists of a prior distribution over model structures

theory.structurePrior, and a function theory.paramPriors which maps a model

structure to a prior distribution over the corresponding parameter space. This program

first samples a model structure, then samples a parameter vector for that model, then

conditions the distribution on observing each data trial being generated by the sampled

actor model. The resulting distribution object encodes the posterior distribution

P (M, θ|D). Alternatively, we can replace the final line to only return the

modelStructure variable, in which case the program marginalizes out the parameters.

Due to the inherent modularity of functional PPLs, we can define a single

general-purpose program for performing any Level 2 inference problem (shown below).

Here, the theory input consists of the structure prior theory.structurePrior27 and a

map from structures to parameter priors theory.paramPriors(structure). The query

27if the observer’s theory specifies a single model structure, then we code
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input specifies which feature of the actor model to return (e.g. full structure, single

structural feature, full parameter set, single parameter, etc.). Thus, a call to the

program Level2 Inference(data, theory, query) returns the posterior distribution

P (query|theory, data).

var Level2 Inference =function(data, theory, query){
return Infer(function(){

var modelStructure = sample(theory.structurePrior)
var θ = sample(theory.paramPriors[modelStructure])
var actorModel = extend(modelStructure, θ)
var observeTrial =function(trial){

var simTrial = actorModel(trial[0])
Condition(simTrial == trial)

}
map(observeTrial, data)
return getQuery(actorModel, query)

})
}

3.5 Level 3: details

3.5.1 Framework Theories

The observer’s framework theory captures general knowledge and expectations about

agent behavior, abstracted away from trial-specific or actor-specific observation.

Intuitively, Level 3 problems can include

• Inferring a general heuristic/structural template for generating behavior. For

example, the “belief-desire-rational action” heuristic often attributed to human

folk psychology can be formalized as a psychological framework theory.

theory.structurePrior as a Delta distribution concentrated on that structure
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• Inferring general properties about actor’s preferences/values. For example,

determining whether there are certain outcomes which actors are generally more

likely to prefer, or determining whether actors tend to have “peaked” preferences

(i.e. highly concentrated around a small number of possible outcomes) or “flat”

preferences (i.e. evenly distributed among a large number of outcomes).

• Identifying distinct actor “types” or “categories,” and the general heuristics and

properties of each type.

Formally, we define a framework theory T as a prior distribution P (M) over actor

models, which is used to do posterior inference in Level 2 as illustrated in the previous

section. There are several forms that this prior could take, depending on the scope of the

observer’s inference problem and higher level knowledge/constraints.28 We shall focus on

three possible forms, which we present in order from most restrictive to least:

1. A single model structure M , and a prior distribution P (θ) over the associated

parameter space. For example, the framework theory may specify a single

belief-desire-action heuristic, parameterized by the actor’s preferences, values, error

rate, etc. In this case, the observer’s framework theory specifies a prior distribution

over these parameters.

2. A mixture of model structures (M1, . . . ,Mn), with an associated prior P (M) over

structures, and a prior distribution P (θi) over each corresponding parameter space.

For example, the framework theory may specify that there are two types of agents:

rational goal-seekers who may change their minds midway through a trial, and

28We discuss these constraints more explicitly in the next section
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goal-seekers who never change their minds during a trial (but may make a mistake

on their way to the goal). In this case, the framework theory would specify the

prior probability that a new actor would have one of these two models, and a prior

distribution over the parameter space for each model. We can also use a

non-parametric prior such as a Dirichlet Process to define an infinite mixture model

(Rasmussen 2000), which allows the observer to learn the number of categories

directly from data.

3. A probabilistic generative grammar (PGG) for model structures (and associated

parameter priors). PGGs use stochastic recursion to define compositional prior

distributions over structures with arbitrary complexity, and are often used for

Bayesian semantic parsing (e.g. Saparov & Mitchell 2016), and other Bayesian

inference tasks over dynamic/sequential data (e.g. Nakamura et al 2016). A PGG

framework theory is useful for cases where there is no obvious upper limit on the

complexity of a model. For example, the observer may believe that actors are

capable of forming hierarchically nested plans (i.e. a high level goal entails a

sequence of sub-goals, each of which may itself require a sequence of sub-sub-goals,

etc), but be uncertain about how many hierarchical levels an actor’s plan may

have. We can define a prior distribution over arbitrarily complex hierarchical goal

structures using a PGG for “plans.”29

While the PGG construction is clearly the most general and flexible, it is also the most

computationally demanding. In this dissertation, we provide simulations and examples

using the first two types of construction, though we outline a simple PGG for actor

29We provide a simple example of such a PGG in appendix B4
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models in Appendix B4.

3.5.2 Inferring a framework theory

The data for Level 3 inference comprise multiple trial observations for multiple different

actors (ideally across multiple different systems). We write D = {D1, . . . , Dn} to denote

a data set containing trial observations for n different actors, where each

Di = {di1, . . . , dimi
} contains a trial observation for each of mi trials involving actor i. An

example of such a data set is shown in figure 3.5.1.
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Figure 3.5.1: Example of cross-actor data for Level 3 inference

In addition to the data, Level 3 inference is constrained by a higher-level

over-hypothesis. From a modeling perspective, the over-hypothesis defines the highest

level of the observer’s background knowledge which we take to be fixed throughout

inference.30 This knowledge includes the form of the framework theory P (M) (for our

purposes: “single-model,” “mixture-model,” or “PGG”), a space M of possible actor

30Of course, as with any hierarchical model, we can always construct a higher-level

model for inferring this higher-level over-hypothesis, which would itself be constrained by

an even higher-level over-hypothesis. So this is only the “highest level” of background

knowledge in the sense that we take it as given in Level 3 inference
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models, a space P of prior distributions over this space of models, and a prior

distribution over P. An over-hypothesis T with these components defines a prior

distribution P (T ) over framework theories. Furthermore, since each T is itself a prior

distribution over actor models, we can also construe T as a hyper-prior for actor models,

i.e. a prior distribution over prior distributions over actor models.

On a computational level, a Level 3 problem involves computing the posterior

distribution P (T |D,T), where T denotes the observer’s over-hypothesis, and D denotes a

cross-actor data set. Before explaining this in more detail, it is important to pause here

and clarify a potential confusion: recall that in the previous section, we define Level 2

inference as computing the posterior distribution over actor models P (M|D,T ), where

D is an actor-specific data set and T is a framework theory. In that context, we defined

the framework theory to be a prior distribution P (M) over actor models. Here,

however, we refer to the observer’s framework theory as the posterior distribution

P (M|D,T). This apparent discrepancy is resolved by the context of inference: when

doing Level 2 inference, the framework theory is assumed to be fixed, and is therefore

treated as “prior knowledge.” At Level 3, however, the framework theory is itself the

subject of inference. Thus, we call the framework theory a “prior distribution” when

referring to it as an input to Level 2 inference, and we call it a “posterior distribution”

when referring to it as the output of Level 3 inference.

With this clarification, we provide a general computational-level definition of Level 3

inference, before illustrating its various forms in more detail. To this end, let T denote

an over-hypothesis which entails a prior distribution P (T |T) over framework theories.

Let D = {D1, . . . , Dn} denote a cross-actor data set. The observer’s Level 3 inference
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problem is to compute the posterior distribution

P (T |D,T) ∝ P (D|T )P (T |T) (3.6)

If we assume that each trial depicts only one actor (i.e. different actors do not interact

with/encounter each other during trials), then each actor’s behavior is conditionally

independent of each other actor’s behavior given the framework theory T . We can

therefore decompose the likelihood term P (D|T ) into a product of actor-specific terms:

P (D|T )P (T |T) =
n∏

i=1

P (Di|T )P (T |T)

In order to compute the likelihood P (Di|T ) for a single actor, the observer must

marginalize out the actor model,31 i.e.

P (Di|T ) =
∑

Mi∈supp(T )
P (Di|Mi)P (Mi|T )

where supp(T ) denotes the support of the distribution T = P (M). Importantly, note

that the likelihood term P (Di|Mi) is the same likelihood that is computed during Level

2 inference. This will have two useful implications for inference when we get to the

algorithmic-level presentation: first, we can re-use the computational and algorithmic

machinery of Level 2 to construct our Level 3 programs. Second, we can easily code our

Level 3 programs to perform Level 2 inference over the observed actors

31in practice it is more efficient to approximate this marginalization with a MaP estimate

of M for each actor
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contemporaneously. That is, we can define a single general-purpose program that infers a

general posterior distribution over framework theories, given data from actors A1, . . . , An,

and simultaneously infers a posterior distribution over actor models for each actor in the

data. Adding this extra level of inference will often speed up Level 2 learning, through

an effect sometimes referred to as the “blessing of abstraction” (Goodman et al 2011).

With that being said, the general algorithmic form for Level 3 inference is as follows:32

var Level3 Inference =function(data, overHyp, query){
return Infer(function(){

var theory = sampleTheory(overHyp)
var makeActorModel = mem(function(actorID){

return sample(theory)
})
var actorModels = map(makeActorModel, data.actorIDs)
map(map(observeTrial(actorModels[i], t), data.trials[i]), actorIDs)
return getQuery(theory, query)

})
}

In this program, data consists of a list of actor IDs (data.actorIDs), and a set of trial

observations for each actor (data.trials[i]). The overHyp input encodes the observer’s

over-hypothesis, either as a fixed model structure and hyper-prior over its parameter

space, or a mixture of model structures and a prior distribution over structures (and

their parameter spaces), or a generative grammar for models and corresponding

hyper-priors. The sampleTheory helper function executes the stochastic process encoded

in overHyp to generate a sample from the appropriate hyper-prior. The

32The usual disclaimer applies: this pseudoprogram is theoretically sound and concep-

tually clear, but hopelessly intractable outside of simple cases. See Appendix B for actual

programs
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makeActorModel function generates an actor model for a particular actor by sampling

from the prior distribution encoded by theory.33 This function is mapped over the set of

actor IDs in data to create an actor model for each actor (stored in the array

actorModels). The observeTrial(actorModel, trial) function adds the Condition that

the data in trial were generated by actorModel, and the nested

map(map(observeTrial . . . statement applies observeTrial to each trial for each actor

model, thereby conditioning the distribution on data. Finally, getQuery extracts the

queried information for this inference. Possible queries include

• The predictive posterior over actor models (i.e. a new actor model sampled for a

previously unknown actor about whom nothing has been observed)

• The predictive posterior over one particular feature or parameter among actor

models

• The posterior distribution over actor models for each actor in the data. Note that

this has the same outputs as performing Level 2 inference for each actor

individually.

To help make this very abstract inference more concrete, we provide a very simple

example before moving onto the next section. For this example, suppose the data D
33The mem command is a memo-ization operator, which allows the program to create

persistently random features; i.e. when mem(f(x)) is called the first time with input v,

it will execute the probabilistic program f(v). When mem(f(x)) is called a second time

with the same input, it will return the same value it returned previously on that input,

without executing f(v). See appendix A for a more in depth explanation of memo-ization
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comprise trial observations from multiple actors in a single “vending machine” system.

This system is very simple: in each trial, the actor is presented with a list of options, and

the actor’s single action in each trial corresponds to choosing one of the options. The

observer’s over-hypothesis T specifies a single model structure, defined by a single mental

variable g and the following programs:

uf(s,m):

return m ==undefined? categorical(vals: objects(s), probs: β): m

af(s,m):

return pressButton(s,m.g)

Intuitively: uf(s,m) first outputs a goal object from among those available in the current

machine, with probabilities given by a value parameter vector β (restricted to the current

possibilities). af(s,m) then outputs the button corresponding to that goal object.

Since this over-hypothesis includes only a single model structure with single

parameter vector β, a framework theory T consistent with T corresponds to a prior

distribution over preference vectors P (β). Thus, T = P (T ) must specify a hyper-prior

over β (i.e. a prior over priors over β). For this example, we define this hyper-prior using

a symmetric Dirichlet distribution Dir([[1]]) (where [[1]] denotes an n× 1 vector of 1s,

and n is the number of possible outcomes) and a concentration parameter γ ∼ Γ drawn

from a Gamma distribution. Intuitively, Dir(ρ) defines a distribution over probability

vectors of length n; when ρ is a vector of 1s, this distribution is uniform over all possible

probability vectors. Scaling ρ up (> 1) concentrates the distribution on probability

vectors that are flat and dense (i.e. distribute probability mass close to evenly among

lots of outcomes), while scaling ρ down (< 1) concentrates the distribution on probability
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vectors that are peaked and sparse (i.e. distribute most of the probability mass among a

small number of outcomes). Thus, if we separate the parameter ρ into an n× 1 vector of

1s and the scalar concentration parameter γ, we can define a prior over preference

vectors with a trainable concentration parameter, i.e. P (β; γ) = Dir(β; γ ∗Dir([[1]])). In

conjunction with the Gamma prior over γ, this defines a prior distribution over prior

distributions over β, and each particular value of γ defines a prior distribution over β,

which, in this case, corresponds to a particular framework theory.

Intuitively, this over-hypothesis reflects that the observer has no expectations about

the distribution of a new actor’s preferences (i.e. no prior expectations about which

outcomes that actor is likely to prefer), but the observer does have prior expectations

about how specific (peaked) or general (flat) the new actor’s preferences will be. The

Level 3 inference problem for this model is to compute the posterior distribution

P (γ|D,T), which measures the likelihood that a new actor will have peaked or flat

preferences, generalized from observations of other actors.

At an algorithmic level, the observer can perform this inference using the following

program form
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var inferGamma =function(data, hyperPrior,modelStructure){
return Infer(function(){

var gamma = sample(hyperPrior);
var makeActor = mem(function(actorID){

var beta = sample(Dirichlet(gamma ∗ ones(N)))
return extend(modelStructure, beta)

})
var actorModels = map(makeActor, data.actorIDs)
map(map(observeTrial(actorModels[i], t), data.trials[i]), data.actorIDs))
return gamma

})
}

This program takes the same form as the previous, general Level 3 inference program:

it first samples a value of the concentration hyper-parameter γ. The function makeActor

samples a random actor model from the prior P (M) entailed by hyper-parameter γ. In

this case, it generates a random preference parameter vector and fills in the missing

parameter from modelStructure with this value. The actorModels object is constructed

by sampling an actor model for each actor in the data. The

observeTrial(actorModel, trial) helper function adds the condition that the data in

trial were observed in a trial generated by actorModel. The nested map(map(. . .

command applies this function to each trial observed for each actor, thereby conditioning

the distribution on the data. Thus, if we define the over-hypothesis

T = {hyperPrior,modelStructure}, then a call to inferGamma(D,T) returns the

posterior distribution P (γ|B,T). This posterior distribution encodes the observer’s

updated expectations regarding how specific actors’ preferences tend to be.

To illustrate this, we construct two sample data sets, each consisting of 10

vending-machine trials for each of 10 different actors. In the first data set (D1), actor
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Figure 3.5.2: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over γ (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution (i.e. framework theory) inferred from a population of “picky” actors (i.e.
dataset D1). Relative to the prior, this distribution is skewed towards low values, and
reflects the knowledge that actors tend to be picky (i.e. have specific preferences). Panel c)
depicts the posterior distribution inferred from a population of “easy” actors (i.e. dataset
D2). Relative to the prior, this distribution is skewed towards high values, and reflects the
knowledge that actor’s tend to be easy (i.e. have general preferences)

models are generated by sampling a concentration parameter γ ∼ Uniform(.25, 1)

(skewed towards low concentration values/peaked preference vectors), while the second

data set (D2) is generated by drawing γ ∼ Uniform(.75, 5) (skewed towards high

concentration values/flat preference vectors). We then apply the inferGamma function

defined above to each data set. The results are shown as histograms in Figure 3.5.2,

which depicts the posterior distributions P (γ|D1) and P (γ|D2) compared to the hyper

prior Γ(1, 1). As expected, P (γ|D1) is skewed towards large values of γ (relative to the

prior) and P (γ|D2) is skewed towards small values. Intuitively, this means that the

observer has learned that the first population of agents tends to have general (flat)

preferences, while the second population of agents tends to have specific (peaked)

preferences.
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3.5.3 What makes a framework theory “psychological”?

The definitions we provide in this chapter characterize framework theories in a very

general way. Since lower level hypotheses (actor models and trial explanations) are

ultimately defined in terms of the higher level theory, there is a wide range of possible

representations and models compatible with these definitions. However, the ultimate

purpose of this framework is to understand the development and application of a folk

psychology, so what distinguishes the models we define here from a more general

framework for causal learning and reasoning? To put this another way, under what

conditions can we justifiably interpret a framework theory as “psychological,” and how

can we formalize these conditions as constraints on the very general space of theories we

describe above?

There are two obvious constraints that stand out immediately. The first is pragmatic:

a psychological framework theory must be useful for explaining, predicting, interpreting,

or otherwise reasoning about human behavior. The second is more conceptual: the

explanations provided by a framework theory must appeal to some kind of hidden state

or value. However, these two constraints are still too general. To illustrate this point, it

will help to consider a few examples of framework theories that are compatible with

these constraints, but do not, we shall argue, seem “psychological” on an intuitive level.

Two such theories are shown in figure 3.5.3. According to the “hive-mind” theory in

figure 3.5.3a, a single pair of hidden states uniquely determines the behavior of multiple

individual actors. This theory satisfies the two conditions we propose above: models in

this theory clearly depend on posited hidden states, and, if appropriately parameterized,

a model of this form could be used to provide something like a belief+desire+rational
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population of agents tends to have specific (peaked) preferences.
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)

5.3 Constraints: What makes a framework theory

“psychological”?
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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population of agents tends to have specific (peaked) preferences.
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Figure 15: Results of Level 3 inference, shown as histograms. Panel a) depicts the prior
distribution over � (i.e. the observer’s over-hypothesis). Panel b) depicts the posterior
distribution inferred from a population of “picky” (i.e. low concentration) actors. Relative
to the prior, this distribution is skewed towards low values, and reflects the knowledge
that actors tend to be picky (i.e. have specific preferences). Panel b) depicts the posterior
distribution inferred from a population of “easy” (i.e. high concentration) actors. Relative
to the prior, this distribution is skewed towards high values, and reflects the knowledge
that actor’s tend to be easy (i.e. have general preferences)
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a) “Hive-mind” framework theory b) “Hidden switch” framework theory

Figure 3.5.3: Two examples of framework theories that aren’t necessarily “psychological”

action explanation of actor behavior, but for all of the actors collectively. But,

intuitively, explanations of this form do not seem “psychological,” as they explain each

actor’s behavior purely in terms of factors external to the actor. This points to another

possible constraint on framework theories: the theory must attribute distinct and

non-interacting hidden entities to individual agents.34

However, figure 3.5.3b shows a theory that satisfies this additional constraint as well,

but does not seem to qualify as “psychological.” According to this “hidden-switch”

model, each actor is explained by a hidden binary state which is always set to “on” or

“off.” When switched to “off,” the actor does nothing. When switched to “on,” the actor

behaves according to a categorical distribution over possible actions, parameterized by θ.

This model fulfills all three criteria: given appropriate parameter values (i.e. an accurate

estimate of the probability that the actor will take a certain action in a certain

34Alternatively, this sort of hive-mind/individualist distinction could be learned from

data collected across different populations of agents (Though it is beyond the scope of the

present dissertation). This inference would correspond to a “Level 4” (over-hypothesis)

problem
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system-state), a model of this form could provide predictive power over an actor’s

behavior; the model clearly relies on a hidden state, and the hidden state is specific to

the actor. However, this model could also be straightforwardly applied to a simple

electric toy with a hidden switch: when “on,” the toy moves according to a fixed

distribution; when off, the toy does nothing. Thus, even though models of this form are

able to explain an actor’s behavior in terms of actor-specific hidden states, the

representational structure and causal role of this states make it intuitively difficult to

recognize these explanations as “psychological.”35

As these examples show, we must think carefully about what kinds of constraints on

framework theories would allow us to justifiably interpret a theory as “psychological.”

Often, the constraints of our folk psychology are described and framed in terms of

certain categories of mental states- typically values/goals/desires/etc. and

beliefs/awareness/perspective/etc.- and certain kinds of functional relations between

these states- typically some kind of utility calculus (e.g. Jara-Ettinger et al 2016) or

principle of rational action (e.g. Csibra & Gergely 1995). Indeed, we spent much of

chapter 2 arguing that, based on the available data, our folk psychology does appear to

consistently involve this sort of “belief+desire+(rational) action” (BDA) heuristic. It is

therefore tempting to derive our constraints from this apparent structure. That is, we

could define “psychological framework theories” to consist of those theories (per our

35Alternatively, we may grant that any theory which attributes persistent, agent-specific

hidden states is psychological, but distinguish between “intentional” and “non-intentional”

psychological theories. In this case, the theory shown in 3.5.3b would be an example of

a non-intentional psychological framework theory, in the sense that its only psychological

state does not point to or represent anything outside the actor.
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definitions in the previous two sections) which share certain structural, relational, and

representational features with the folk psychology that does, in fact, consistently

develop. We could interpret this as a set of structural constraints on the space of

allowable theories, e.g. we could characterize what counts as a “value/goal/desire”

variable and require that a psychological framework theory include such a variable.

Given our questions of interest, however, this would defeat the purpose of our

analysis. After all, the high level questions motivating this dissertation are why and how

do we so consistently develop a BDA folk psychology? It is clear that building this BDA

structure into our high-level constraints would prevent us from answering these questions

in any meaningful way. Instead, our approach appeals to the structure of the observer’s

inference problem to derive constraints. That is, we define constraints on framework

theories in terms of

1. the data that the theory must explain (e.g. what kinds of

environments/behavior/actors does the observer frequently encounter?),

2. the tasks that the theory must be used to solve (e.g. what does the observer need

to explain? what aspects of behavior do they need to predict, and how

accurately?), and

3. the observer’s cognitive constraints (e.g. what are the observer’s

representational/computational/memory resources?)36

Our goal in chapter 5 is to show that BDA-like theories (or theories with BDA-like

features) are, in some sense, the rational solutions to the mental inference problems we

36This is the where the PPL aspect of the framework becomes most useful
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face in our everyday social experience. We therefore draw on constraints imposed by the

task demands of mental and social inference, rather than the apparent structure of our

(real-life) solutions to these problems. For example: we shall not observe that human

psychological explanations are, in fact, framed in terms of hidden “goal” states (which

have certain representational and relational properties), and then require that our

framework theories include hidden states with these properties. Instead, we shall observe

the structure of the social and mental inference problems we face in our everyday

experience (including data, tasks, and the observer’s cognitive constraints), and argue

that the “rational” solutions to those problems are those that include hidden states with

“goal-like” representational and relational properties.

To this end, in chapter 5, we shall use our framework to

1. formally define some of the mental and social inference problems we face in daily

social experience,

2. formally characterize a notion of “rationality” that we can use to evaluate solutions

to these problems,

3. show why (and in what circumstances) the “rational” solutions to these problems

have a BDA-like structure, and

4. motivate an account of how these solutions could develop through domain-general

inference processes (in conjunction with domain-specific prior knowledge)

In this sense, we shall argue that a) BDA heuristics provide a “rational” solution to

social inference problems, and b) it is plausible that we develop BDA folk psychologies

because they are rational solutions to the social inference problems we face. Before we

91



present these theoretical arguments, however, we first provide a methodological

framework for connecting these computational models to cognitive behavioral data.

4 Connecting models with data

4.1 The challenges of infant cognitive studies

37In chapter 2, we described some of the main theoretical, conceptual, and

methodological challenges involved in explaining cognitive development, and in chapter

3, we presented a computational modeling framework for addressing some of these

challenges in the context of ToM development. In order for this framework to be

effective, we will need to use it in two different ways: first, we will need to use it as a

theoretical basis for demonstrating and justifying, through simulation, how (and under

what circumstances) certain kinds of cognitive development could occur. Second, we will

need to use it as a basis for interpreting behavioral data, and determining what that

behavioral data reveals about our cognitive development. In this chapter, we present a

methodological framework for the latter: that is, we demonstrate how our framework can

be used to interpret data generated by cognitive behavioral studies. We focus in

particular on infant cognitive studies for two main reasons: first, understanding the first

12-18 months of life is especially crucial for obtaining a complete picture of human

cognitive development. Second, infant cognitive studies pose unique theoretical and

methodological challenges, and we believe our framework is well suited to address these

37Portions of this chapter appear in the article How do we know what babies know? in

the Journal of Philosophical Psychology (in press)
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challenges.

One of the main reasons that infant cognitive studies are so challenging is that there

are relatively few ways to collect relevant data. For obvious reasons, we cannot expect

infants to tell us what they are thinking. For practical and technical reasons, standard

neuroimaging techniques are difficult to apply to infants (Raschle et al 2012). Thus, we

are often forced to rely on behavioral data alone. This presents a challenge in itself, as

there aren’t many behaviors that young infants can reliably perform. For this reason, the

vast majority of infant cognitive studies use visual fixation time (i.e. the length of time

that an infant visually attends to a stimulus) as the main measure of interest. This

leverages one of the few behaviors that infants of all ages regularly engage in: staring at

things.

There are many different methods for collecting fixation data from infants.

Interpreting such data requires an assumption that connects fixation times to some

underlying cognitive process; such assumptions are called linking hypotheses (Aslin 2007,

Teller 1984). Intuitively, a linking hypothesis tells us what the infant’s fixation behavior

reveals about how the infant perceives or processes a stimulus. One of the most common

looking time paradigms- the visual habituation paradigm- relies on a linking hypothesis

that connects an infant’s fixation time with the novelty, complexity, or unexpectedness of

the stimulus. The origins of this assumption are often attributed to a series of studies

performed by Robert Fantz in the late 1950s and early 1960s (Fantz 1958, 1961, 1964).

In these studies, infants were shown a sequence of paired stimuli shown side-by-side. In

each step, the stimulus on side one was held fixed, while the other stimulus varied

between steps. The authors found that, across trials, infants gradually shifted their

attention away from the fixed stimulus and towards the novel stimuli. The term
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habituation refers to this gradual decrease in fixation time as a stimulus is repeated (and

thereby becomes more familiar).

Since these findings, habituation experiments have been used extensively to

investigate how infants represent and understand the world. This includes infants’

understanding of object physics (e.g. Baillargeon 1986, Leslie 1984, Spelke et al 1994,

Spelke et al 1995) how infants perceive and interpret causal events (e.g. Cohen & Oakes

1993, Leslie & Keeble 1987, Muentener & Carey 2010, Oakes & Cohen 1990), how

infants interpret intentional actions (e.g. Brandone & Wellman 2009, Csibra & Gergely

1998, Gergely et al 1995, Paulus et al 2011, Phillips & Wellman 2005, Woodward 1998),

and whether infants are sensitive to the beliefs of other agents (e.g. Brooks & Meltzoff

2002, Kovacs et al 2010, Onishi & Baillargeon 2005, Surian et al 2007). Indeed, without

the development of looking time experiments, we would know very little about infant

cognition whatsoever.

There are, however, a number of concerns regarding what these experiments reveal

and how their results ought to be interpreted. First, the conclusions drawn in any

looking time experiment depend critically on the assumed linking hypothesis, and it is

therefore crucial to thoroughly test and understand the linking hypothesis itself. To this

end, several authors have called for an increased focus on studying and formally

modeling the habituation process per se (e.g. Aslin & Fiser 2005, Colombo & Mitchell

2009). Other authors have expressed more theoretical concerns about how hypotheses

ought to be formulated and validated (Aslin 2007, Oakes 2010), and more practical

concerns about the proper criteria for establishing when an infant has habituated to a

stimulus (Dannemiller 1984, Thomas & Gilmore 2004).

More generally, any study that asks what a subject knows, or how a subject
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represents a stimulus, faces a certain kind of underdetermination that can be difficult (or

impossible) to resolve. In particular, there are often multiple distinct accounts of how a

subject represents a stimulus that result in identical behavior under the same

experimental assumptions. To illustrate this, consider the following scenario: two young

siblings (Ivan and Amos) go with their parents to an ice cream shop and each get a cone.

After leaving the shop, Ivan drops his cone and begins to cry. Now consider the following

two descriptions of what transpires next:

1. Amos sees that his brother is crying because he dropped his cone. He doesn’t like

it when his brother cries, so he gives Ivan his own cone, hoping this will help Ivan

stop crying.

2. Amos sees that his brother feels sad because he dropped his cone. He doesn’t like

it when his brother is sad, so he gives Ivan his own cone, hoping this will help Ivan

feel better.

Both cases describe (from an outside observer’s perspective) the same stimulus and

response: Ivan drops his cone and begins to cry, and Amos gives Ivan his own cone. But

the reasoning underlying Amos’ response in each scenario is very different. The first

explanation is strictly behavioral: Amos reasons that Ivan’s behavior (crying) is a direct

reaction to a change in his environment (dropping his cone). The second explanation is

more mentalistic: Amos reasons that Ivan’s behavior is a reaction to a hidden mental

state (sadness) which is caused by dropping his cone. Both of these accounts describe

the same sequence of events, but involve very different reasoning and representations. If

Amos is sufficiently verbal, we might try to distinguish these two accounts by asking him

to explain his reasoning, but that is not an option when the subject is a preverbal infant.
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For this reason, great care must be taken to precisely specify the hypotheses being tested

in a habituation experiment, and the behavioral predictions we generate from each

hypothesis.

In this chapter, we will demonstrate how our computational modeling framework can

be used to

1. precisely specify a set of hypotheses about how an infant represents a stimulus,

2. precisely specify the linking assumptions that relate cognitive representations to

experimental behavior,

3. apply these linking assumptions to generate behavioral predictions from each

hypothesis via a simulated version of habituation, and

4. evaluate which hypotheses can be validated or refuted by a given experiment.

In section 4.2, we start by reviewing visual habituation experiments in more detail,

and identify the theoretical and methodological challenges which our framework

addresses. We focus in particular on two main issues: the lack of formalizations of

hypotheses about infants’ cognitive representations, and the lack of formalizations of the

linking assumptions through which experimental results are interpreted. In section 4.3,

we illustrate how our framework provides the three components described above. In

section 4.4, we illustrate these applications by replicating a seminal study on infants’

understanding of intentional actions (Woodward 1998). We demonstrate how our

framework allows us to formalize the qualitative question posed in this study, how it

enables a more precise interpretation of its results, and what further insights or analysis

this interpretation suggests.
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4.2 Background

4.2.1 Looking times and habituation experiments

While infant fixation studies date back to the early 20th century (Segers 1936, Valentine

1913), the seminal demonstration of infant habituation is often attributed to a series of

studies by Robert Fantz in the early 1960s (Fantz 1958, 1961, 1964). In the 1964 study,

each infant was shown a sequence of stimuli paired side-by-side. In each trial, the

stimulus on one side was held fixed, while the stimulus on the other side was novel. As

the trials progressed, infants gradually shifted their visual attention away from the fixed

stimulus and towards the novel one. Habituation refers to this progressive decrease in

fixation time as a stimulus becomes more familiar.

Since this study, the logic of visual habituation has been developed into a set of

experimental paradigms, which we briefly describe here. A standard habituation

experiment38 involves an initial habituation phase and a subsequent test or

dishabituation phase. In the habituation phase, the infant is repeatedly shown the same

stimulus over multiple trials, and the experimenter records the infant’s fixation time;

that is, the duration for which the infant attends to the stimulus before looking away. As

the stimulus is repeated, the infant’s fixation time progressively decreases. The

habituation phase is typically ended once fixation time reaches some pre-defined

threshold (Horowitz et al 1972), at which point the infant is assumed to be habituated

and the test phase begins.

In the test phase, the infant is shown two or more stimuli, sometimes in sequence,

sometimes simultaneously. Typically, the stimuli are designed so that the habituation

38Henceforth we use “habituation” to denote “visual habituation” specifically
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stimulus contains one or more salient features, and the test stimuli each differ along one

of these features. Dishabituation refers to a sharp increase in fixation time as the infant

first encounters a stimulus that differs from the habituation stimulus. If the infant is

shown two test stimuli (say, A and B), and dishabituates significantly more to one

stimulus over the other (say, stimulus A), this is interpreted to mean that stimulus A

appears more novel, unexpected, or complex to the infant, relative to the expectations

formed during habituation. Under this reasoning, we can design the experimental stimuli

to determine which features are most integral in the infant’s representation of a stimulus.

To better illustrate this paradigm, recall the seminal habituation study into infants’

understanding of goal-directed actions that we briefly described in chapter 2 (Woodward

1998). The habituation stimulus in this study (see figure 2.1.1) consists of a stage with

two platforms, each holding a visually distinct toy. An actor stands to one side of the

stage, so that only their arm is visible. In each habituation trial, the actor reaches for

and grasps one of the toys, targeting the same toy each time. In the test phase, the

position of the two toys is switched, while the actor remains on the same side. The

infant is then shown two test events. In the “new-goal” test event, the actor performs

the same physical reaching motion as in the habituation stimulus (long-reach or

short-reach), thereby grasping the opposite toy. In the “new-motion” test event, the

actor performs the opposite reaching motion, thereby grasping the same toy.

The logic underlying this design is that the habituation event depicts two salient

features: action (spatiotemporal profile of the actor’s arm), and outcome (which toy is

grasped). If the infant encodes the habituation stimulus in terms of the action feature,

then the test event which varies the action (new-action) should appear more novel to the

infant, resulting in a higher rate of dishabituation. Conversely, if the infant encodes the
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habituation stimulus in terms of the outcome, the new-goal test event should appear

more novel. In this study (and a follow-up series of replications and control studies), 8-

and 9-month old infants consistently dishabituated to the new-goal event at higher rates,

leading to the conclusion that infants represent reaching actions in terms of the target

object, rather than physical arm motion.

The Woodward (1998) experiments nicely illustrate the core principles underlying

habituation studies. Similar methods have been used extensively to explore how infants

represent different aspects of the world, such as object physics (e.g. Baillargeon 1986,

Leslie 1984, Spelke et al 1994, Spelke et al 1995), causation (e.g. Cohen & Oakes 1993,

Leslie & Keeble 1987, Muentener & Carey 2010, Oakes & Cohen 1990), intentions (e.g.

Brandone & Wellman 2009, Csibra & Gergely 1998, Gergely et al 1995, Paulus et al

2011, Phillips & Wellman 2005, Woodward 1998), and beliefs (e.g. Brooks & Meltzoff

2002, Kovacs et al 2010, Onishi & Baillargeon 2005, Surian et al 2007). However, a

number of authors both within and adjacent to developmental psychology have expressed

concerns about the design and interpretation of habituation experiments, calling for an

increased focus on studying the process of habituation itself, and an increased focus on

computational models of habituation (Aslin 2007, Aslin & Fiser 2005, Colombo &

Mitchell 2009, Oakes 2010, Thomas & Gilmore 2004).

4.2.2 Theoretical models of habituation

Infant fixation data can only be interpreted through the lens of a linking hypothesis,

which specifies the underlying cognitive or neurological processes that drive infants to

selectively allocate their visual attention. There have been multiple proposed accounts of

what drives this process, but most accounts share a common view that infant looking
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times reflect some combination of stimulus-driven attention, memory of previously

encountered stimuli, and some means of comparison between past and present stimuli

(Kidd et al 2012).

One of the longest-standing and most widely cited explanations for infant

habituation is the Sokolov comparator model (Sokolov 1963). This model was based on

observations of an orienting reflex (OR), a set of behavioral responses to nonthreatening,

novel stimuli of moderate intensity (Colombo & Mitchell 2009). Research on the OR in

animals demonstrated that the magnitude of the OR response would progressively

decrease as a stimulus was repeated. Sokolov theorized that as an organism repeatedly

encounters a stimulus, the organism forms an internal representation or “cognitive

schema” of that stimulus, and compares the observed stimulus to the inferred

representation. Under this theory, the magnitude of the OR response (in the context of

infant studies, the infant’s fixation time) is inversely proportional to the degree of

similarity between observed stimulus and internal representation.

A second theoretical approach which became prominent in the 1980s is the

dual-process account (Groves & Thompson 1970, Thompson & Spencer 1966). Under

this account, the profile of an infant’s fixation time in response to a repeated stimulus is

determined by two independent processes. The first is a familiarization process, which is

similar to the comparator model of habituation, and results in a similarly decreasing

response to repeated stimuli. The second is a sensitization process, which induces a

transient increase in response strength at the introduction of a new stimulus. Under a

dual-process model, an infant’s fixation time reflects both of these processes working in

tandem. Several key predictions of this theory were confirmed in a series of infant

studies in 1985 (Bashinski et al 1985).
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Due to its explanatory power, relative conceptual simplicity, and plausible

physiological underpinnings (Bernstein 1979, 1981), the comparator theory (or

comparator + sensitization) has remained the dominant account of infant habituation,

though many implications of dual-process accounts continue to be accounted for in

experimental analysis. However, without formal models of certain key aspects, these

theories provide only rough conceptual guidelines for designing habituation experiments,

leaving unanswered many critical questions about proper experimental design and

interpretation of experimental results.

4.2.3 Challenges and computational models

Here we review some of the concerns that have been raised about infant habituation

studies. These include practical concerns about proper experimental design and

physiological concerns about the neural substrates underlying habituation, and several

authors have proposed computational models to help address these issues. However, our

questions of interest relate more specifically to the “cognitive schema” or internal

representations that an infant acquires during habituation, and what we can infer about

these representations from the infant’s fixation behavior. Several authors have identified

key challenges in making such inferences about infants’ cognitive representations (e.g.

Aslin & Fiser 2007, Oakes 2010), and we argue that the current literature lacks the

computational models necessary to address these challenges.

The first concern is that infants almost certainly form expectations and preferences

for stimuli through their everyday experience, which may affect an infant’s performance

in an experimental setting. This is precisely the purpose of the habituation phase,

during which the infant is repeatedly shown a “biasing stimulus” so as to shift the
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infant’s intrinsic expectations (either by eliminating a prior expectation, or inducing an

expectation where none existed). However, infants’ intrinsic expectations can still “seep

through” to the post-habituation phase, making it difficult to determine whether the

infant’s test-phase fixation times solely reflect the expectations formed during

habituation (e.g. Quinn et al 2002). Thus, great care must be taken to determine what

pre-existing expectations might influence the infant’s performance, and assess those

expectations in order to accurately interpret experimental results.

Another concern is what we can conclude about the infant’s internal representations

when the habituation and test stimuli differ along inferred features as well as observable

features. For example, if the habituation stimulus depicts a certain shape of a certain

color, and the two test stimuli depict a) the same shape in a different color and b) a

different shape in the same color, it is fairly straightforward to infer which feature (if

any) is more integral to the infant’s representation, as both features are easily

perceptible. In many experiments, however, the novel and familiar stimuli differ in terms

of some inferred feature, which has an observable effect but is not directly observable

itself. A clear example is the Woodward (1998) experiment, wherein one of the test

stimuli differs from the habituation stimulus in terms of the actor’s goal. That infants

consistently dishabituated more strongly to the “new-goal” test event clearly shows that

infants can detect the physical features that are relevant to the actor’s goal (i.e. the path

and location of the actor’s hand relative to the target object), but this does not directly

show whether the infant represents those physical differences in the same way that an

adult would (as observable consequences of the actor’s hidden goal state). Thus, great

care must be taken to precisely specify the hypotheses being tested, and to avoid

drawing stronger conclusions (i.e projecting on the infant a richer mental representation)
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than are warranted by the data.

As we cannot directly observe an infant’s knowledge or internal representations, and

we cannot ask infants to tell us about their internal representations, addressing these

challenges requires a computational model that allows us to a) formulate precise

hypotheses about how the infant represents a stimulus (and the relevant background

knowledge that constrains this representation), and b) connect that hypothesis to a

prediction about how the infant would act on a given representation. That is, because

we cannot “observe” how the infant represents a stimulus, we must rely on principled

counterfactual claims regarding how the infant would behave if they did represent a

stimulus in a certain way, which we can then compare against their observed behavior in

an experimental setting.

The current literature on formal models of habituation is largely characterized by two

approaches, neither of which is very well suited for these tasks. One approach is to

model habituation using regression analysis (e.g. Ashmead & Davis 1996, Dannemiller

1984, Thomas & Gilmore 2004), which is often used to perform robustness checks on

certain experimental practices (e.g. the proper criteria for determining when an infant

has habituated to a stimulus). These models abstract away from any details regarding

infants’ internal representations, instead treating fixation time as a function of trial time

directly. The other approach uses connectionist and dynamic systems models to

investigate the neurological substrates underlying habituation (e.g. Elman et al 1998,

Sirois & Mareschal 2002, 2004, Van Overwalle 2010). These models deal directly with

the low-level mechanisms involved in habituation, and are similarly unsuited for

answering questions about what infants “know.” Thus, there is a clear gap in the

relevant literature at the level of cognitive representation, where our questions of interest
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reside. In the next section, we argue that the framework we presented in chapter 3 is

well suited for addressing questions about infants’ knowledge and internal

representations, and demonstrate how to connect those models with habituation data.

4.3 Methodological framework

In order to address the challenges described in 4.2, we need the three following

components:

1. a way to formalize claims about how an infant represents a stimulus (i.e. the

“cognitive schema” that an infant acquires),

2. a way of connecting these claims to predictions about infant looking behavior (i.e.

a linking hypothesis), and

3. a way to model the process through which these representations are acquired

during habituation.

We shall illustrate how the computational framework from chapter 3 provides these

components.

4.3.1 Conceptual overview

At a high level, the purpose of this methodological framework is to enable us to make

inferences about an infant’s framework theory, based on their behavior in a two-stage

habituation+test task. In order to make these inferences, we will rely on statements of

the form “an infant with framework theory T , if habituated to stimulus s, will display

fixation behavior v in response to test stimuli t1 and t2.” We can use our computational
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modeling framework to derive and justify such statements, and then invert these

statements to make inferences about the infant’s framework theory, based on their visual

fixation responses in a habituation experiment.

In order to derive these statements, we need a way to characterize a set of possible

framework theories that an infant may hold for a particular class of stimulus. To this

end, we can use the Level 3 representations defined in chapter 3.5.39 Each framework

theory specifies a set of possible actor models that the infant may infer during

habituation, and each actor model determines the expectations that the infant should

display during the test phase. Given a class of experimental stimuli, we can constrain the

set of plausible framework theories by appealing to what the infant is likely to already

know. For example, there is evidence that young infants understand that causal relations

respect the forward direction of time (Leslie & Keeble 1987), so we may omit any

framework theory in which past features may be causally dependent on future features.

We may also derive constraints from other levels of analysis (e.g. behavioral,

physiological, etc.), though for this chapter we focus on constraints derived from

expectations on the subject’s background knowledge. The set of framework theories that

are consistent with these constraints determines the set of hypotheses that we (i.e. the

experimenters) may consider as plausible candidates for the infant’s cognitive

representations.

Given this set of plausible candidate theories, the next step is to characterize how the

infant’s framework theory determines the internal representation or “cognitive schema”

39Note that, for this application, we are not concerned with how the infant infers the

framework theory to begin with, but how a given framework theory constrains the infant’s

behavior in a particular habituation task
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they acquire during habituation to a particular stimulus. In the context of our

computational framework, this corresponds to a Level 2 inference problem, i.e. inferring

an actor model for the actor depicted in the habituation stimulus, from a single

(repeated) instance of that actor’s behavior. Thus, our Level 2 framework allows us to

connect claims about the infant’s framework theory with predictions about the cognitive

schema the infant acquires during habituation. However, we obviously cannot directly

observe the infant’s cognitive schema, so the last step is to formalize a linking hypothesis

that connects the observable data (i.e. the infant’s fixation behavior during the test

phase) to the infant’s unobservable cognitive schema. At a high level, a formalized

linking hypothesis corresponds to an input-output map. The inputs are pairs consisting

of a) a cognitive schema (i.e. the representations or expectations acquired during

habituation) and b) one or more test stimuli. The outputs are predictions about the

infant’s visual fixation behavior in response to each test stimulus.

There are several ways to formalize a linking hypothesis, and we distinguish between

two general approaches. The first is a quantitative approach: given a cognitive schema

and a test stimulus, a quantitative linking hypothesis outputs a numerical prediction of

the infant’s fixation time on that test stimulus. We can compute this numerical

prediction using a formal notion of complexity (e.g. the information content of the test

stimulus, or a measure of logical coherence between test stimulus and inferred

representation) or expectedness (e.g. the posterior likelihood of the test stimulus given

habituation stimuli and prior expectations). We can then generate a numerical

prediction of fixation time as a function of this complexity measure. The exact details of

this computation depend on a) how we formalize the hypothesis space, and b) the nature
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of the linking hypothesis we are formalizing.40

A second approach is more qualitative: given a cognitive schema and two or more test

stimuli, we again compute the same complexity measure for each test stimulus as above.

However, rather than mapping these values to numerical fixation time predictions, we

consider the ratio of these values to predict which test stimulus the infant will fixate on

for longer. If test stimulus s1 is significantly more complex or unexpected than s2, we

can predict that the infant will fixate on s1 for longer, without having to explicitly

predict the fixation time itself. This method is generally easier to apply, as it requires no

numerical calibration or estimation to match observed fixation times.

To summarize this methodological framework at a conceptual level: we represent the

infant’s framework theory using the Level 3 representations defined in chapter 3.5, and

define our question of interest in terms of subsets of possible framework theories. We

simulate the habituation phase using Level 2 inference, which specifies the particular

cognitive schema (in the context of ToM tasks, the actor model) that an infant with a

given theory will infer during habituation to a particular stimulus. We then use our

formalized linking hypothesis to connect the inferred cognitive schema to a prediction

about the infant’s visual fixation response to the test stimuli. Putting these components

together allows us to derive statements of the form: “an infant with framework theory T

will infer actor model M from habituation stimulus S, which will lead to visual fixation

behavior v in response to test stimuli t1 and t2.” We can then invert these statements to

make inferences about an infant’s framework theory, based on their observed visual

40If, for example, we are formalizing a dual-process linking hypothesis, then the pre-

dicted fixation time would be a function of stimulus complexity and a sensitization rate,

the latter being estimated through some other process
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fixation behavior in a particular habituation task.

4.3.2 Technical details

To illustrate the details of the conceptual approach described above, we will model the

habituation experiment performed in Woodward (1998).

Defining a hypothesis space of framework theories The first step is to define a

set of candidate framework theories for the class of stimuli used in these experiments.

For simplicity of presentation, we shall assume that each framework theory consists of a

single structural model and a prior distribution over the induced parameter space. We

shall encode the salient observable features of each stimulus using three variables

S = (s0, a, s1), where

• s0 denotes the initial state of the stimulus (i.e. the position of the two toys, the

position of the actor’s arm and hand, etc.),

• a denotes the action (i.e. spatiotemporal profile of the actor’s arm), and

• s1 denotes the outcome, which encodes the same information as the initial state,

but at the end of the trial.

The structural part of a framework theory for this class of stimuli consists of a set of

variables containing (s0, a, s1), as well as any latent variables posited by the observer.

For the purpose of this illustration, we restrict the latent variables to at most one hidden

feature g and up to one bias parameter for each of a, s1, and g. The structural model is

fully determined by its variable set and a dependency relation over those variables, and

we can interpret each structural model as a framework theory about how the relevant
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class of stimuli are generated. Figure 4.3.1 illustrates four possible structural models

consistent with these definitions.

s0 s1
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psychological explanation of d can be characterized at both the computational and
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a: action-encoded b: reflex

c: teleological d: goal-encoded

Figure 4.3.1: Examples of structural models for Woodward (1998) stimuli

Model 4.3.1a corresponds to an action-encoded model, according to which the actor

has a bias towards certain arm motions, and the outcome results from the actor’s chosen

action. Model 4.3.1b corresponds to a reflex model, under which the action is a direct

response to the initial configuration of the environment. Model 4.3.1c is an

outcome-encoded or “teleological” model (Csibra & Gergely 1998), according to which

the actor has a bias towards achieving a certain outcome, and selects the action that

achieves that outcome.41 Model 4.3.1d is a goal-encoded model, which is similar to the

41Note that this model contains an arrow s1 → a which appears to go backwards in

time. Thus, an observer with this model either a) does not recognize that causal relations
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outcome-model, but represents the actor’s goal as a hidden state that precedes the

action, rather than the physical outcome which follows the action. Each of these models

corresponds to one possible framework theory of reaching actions. Each allowable

parameterization of a model corresponds to one particular representation (actor model)

that an observer with that theory may consider for a single actor’s reaching behavior.

We can therefore define our hypothesis space of initial theories as the set of structural

models over this variable set (and their corresponding parameter spaces) consistent with

any constraints we derive from the subject’s presumed background knowledge. The

constraints we impose may be structural (e.g. eliminating any structural model with an

arrow that goes backwards in time) or parametric (e.g. restricting the parameter

P (s1|a, s0) so that an actor who performs a short reach cannot grasp the toy that is

further away).

With a hypothesis space formalized in this fashion, we can more precisely

characterize the sort of qualitative claims about infants’ representations that are tested

in habituation experiments. The Woodward (1998) experiments, for example, explore

whether infants encode reaching events in terms of the actor’s arm motion or the target

object of the reach. Given a hypothesis space of framework theories as described above,

we can interpret each of these possibilities in terms of the structural model. In

particular, if a model includes one or more trainable parameters corresponding to the a

feature and no trainable parameters corresponding to the goal or outcome feature (e.g.

figures 4.3.1a and 4.3.1b), then the infant would have to attend primarily to the

arm-motion in order to infer the values of these parameters. We can therefore identify

cannot go backwards in time or b) interprets this arrow as a distinct type of non-causal

relation.
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these models as “encoding the reach in terms of the arm-motion.” Similarly, if the

structural model includes a trainable parameter corresponding to the goal or outcome

(e.g. figures 4.3.1c and 4.3.1d), then the infant would have to attend to these features in

order to train the parameters. We can therefore identify these models as “encoding the

reach in terms of the outcome.” In section 4.4, we derive a more exhaustive hypothesis

space of structural models for the Woodward (1998) experiments and illustrate how to

interpret this qualitative question as subsets of this space.

Modeling habituation In order to connect the infant’s hypothesized framework

theory with the cognitive schema they acquire during habituation, we need a way to

model the process through which an infant acquires this cognitive schema. In the context

of our computational framework, this corresponds to Level 2 inference: that is, given a

framework theory T (i.e. structural model and parameter prior), we model habituation

as the process of inferring an actor model M which best accounts for the behavior of the

actor depicted in the habituation stimulus s. To this end, let s denote a habituation

stimulus and Sn denote the evidence presented after the nth habituation trial (i.e. a

sequence of n stimuli identical to s). A rational Bayesian observer interprets this

evidence using Bayes’ theorem:

P (M |Sn, T ) ∝ P (Sn|M)|P (M |T )

Here, P (M |Sn) is the degree to which the observer believes in actor model M given

evidence Sn and prior beliefs P (M |T ). As n increases, we can identify the increasing

familiarity of the habituation stimulus with the increasing posterior likelihood P (s|Sn)
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under the subject’s inferred distribution. This is obtained by integrating P (s|M) over all

values of M (i.e. all representations compatible with the observer’s initial theory),

weighted by the posterior distribution P (M |Sn).

If necessary, we can formulate explicit habituation criteria in terms of the posterior

likelihood. If our criterion is reached after the nth habituation trial, we then simulate

the observer’s performance in the test phase by computing the likelihood of each test

stimulus under the posterior distribution P (M |Sn). This formalizes the notion that an

infant interprets the test stimuli with respect to the representation inferred during

habituation. By computing the likelihoods of the two test stimuli under this

representation, we can apply our linking hypothesis to predict how the observer will

allocate their visual attention to these stimuli.

However, we can also abstract away from methodological concerns regarding

habituation criteria by simulating the observer’s performance in the test phase after each

habituation trial. Unlike a real-world habituation experiment, we do not have to wait for

the observer to reach a pre-defined threshold before applying the above computation. We

can therefore obtain simulated curves plotting the degree to which each test stimulus

would be unexpected to an observer habituated to n habituation stimuli, for any value of

n42. This allows us to generate simulated habituation curves as well as simulated plots of

the observer’s performance in the test phase after each habituation trial.

Actor models and fixation times The last step is to formalize the linking

hypothesis that connects the infant’s inferred actor model to a prediction about the

infant’s visual fixation behavior during the test phase. In the context of our

42If n = 0, this simulates the observer acting on prior expectations alone
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computational framework, this corresponds to a form of Level 1 inference. Recall the

general functional form of a formalized linking hypothesis: given a representation

inferred during habituation and a pair of test stimuli, the linking hypothesis outputs a

prediction about the subject’s behavior in response to the test observations. This

prediction can be quantitative (e.g. a numerical prediction of fixation time for each test

stimulus) or qualitative (e.g. predicting which test stimulus the subject will fixate on for

longer). The common assumption underlying most habituation experiments is that an

infant will fixate longer on a stimulus that is more complex, unexpected, or novel, given

the expectations acquired during habituation. The Bayesian framework provides a

natural analogue of these notions in the form of the likelihood function.

For a given actor model M and test stimulus t, the likelihood term P (t|M) is the

probability of observing t given that M is true. If P (t|M) is very low, this means that

the test stimulus is highly unexpected, given the expectations entailed by M .

Conversely, a high P (t|M) indicates that t is largely expected by an observer who has

inferred actor model M . We can leverage this interpretation of posterior likelihood to

formalize both qualitative and quantitative linking hypotheses. For a qualitative linking

hypothesis, suppose an observer infers actor model M during habituation and is then

shown test stimuli t1 and t2. If P (t1|M)/P (t2|M) is significantly lower than 1, we predict

that the observer will fixate on t1 for significantly longer than t2, and visa versa if

P (t1|M)/P (t2|M) is significantly larger than 1. A similar approach is taken in Kemp &

Xu (2009) to connect a generative model of object trajectories with predictions about

infants’ relative fixation times in object perception experiments.

A more quantitative approach is to use the posterior likelihood to compute an

objective measure of stimulus complexity, given the observer’s inferred representation.
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This is the approach taken in Kidd et al (2012) to test the linking hypothesis that

infants allocate their visual attention to stimuli that are neither too simple nor too

complex. To this end, the authors define a generative model M of their experimental

stimuli, and equate the complexity of a stimulus t with its negative log-probability

(−log(P (t|M))) under M . This value- the surprisal of M - is often used in statistics and

information theory as a proxy for information content, and quantifies the memory cost of

encoding that stimulus for an ideal observer with representation M . We can therefore

use the surprisal of a stimulus under a given representation as a basis for quantitative

predictions about an infant’s fixation time.

There are, of course, several different theories of habituation, some of which involve

other factors in addition to stimulus complexity. Therefore, the precise way in which we

connect the likelihood function to predictions about fixation behavior may vary

depending on which linking hypothesis we apply. However, nearly every account

involves, in some way, a notion of stimulus complexity or unexpectedness. While there

may be additional technical differences for different implementations, the likelihood

function provides a natural basis for computing the complexity (or unexpectedness) of a

stimulus under a given representation.

Lastly, note that there are two different ways that one can use this reasoning to test

hypotheses about infant habituation. The first is to apply a fixed linking hypothesis

(formalized as some function of posterior likelihood) to a set of generative models, to

determine which models induce fixation behavior consistent with infant behavior. This is

useful for testing hypotheses about how infants represent stimuli, similar to Kemp & Xu

(2009). The second is to assume a fixed generative model of a class of stimuli, and

generate looking time predictions under multiple complexity-dependent linking
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hypotheses. This is applicable for testing the linking hypothesis itself, similar to Kidd et

al (2012). For our present purposes, we shall focus on the first application for the rest of

this paper.

4.3.3 Empirical interpretations of the Bayesian framework

In recent years, rationalist approaches have become increasingly common in cognitive

science, most frequently using the formal machinery of Bayesian inference. There are,

however, different perspectives regarding how we ought to interpret such models, and

how they may be useful for studying cognition (for a more thorough review of these

perspectives, see Chater et al 2008, Griffiths et al 2008, Jones & Love 2011, Lee 2011).

In order to understand these perspectives, it is important to understand the so-called

“three levels of analysis” that are typically identified in cognitive modeling (Marr 1982).

The first is the computational level, where we characterize the abstract problem that is

solved by some cognitive function and the information involved in that problem. At the

algorithmic level, we characterize the process through which a cognitive agent might

solve that problem, including the representations involved and how those representations

are manipulated. At the implementation level, we identify how these representations and

algorithms might be implemented in the relevant physiological substrates. Of course,

these levels are not completely independent; knowledge at lower levels of analysis can

provide constraints on hypotheses at higher levels.

Many papers that take a rationalist approach to cognitive science restrict their

interpretation to the computational level of analysis; they present the model as useful

way of characterizing the cognitive problems being solved, rather than a literal claim

about the processes through which they are solved. Other papers adopt a more realist
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perspective, treating the model as a hypothesis about the cognitive representations

involved in such processes. Our perspective for the methodological framework in this

chapter is similar in spirit to the latter, though somewhat different in application. Much

of the work in explaining human cognition with generative models focuses on “existence

demonstrations;” that is, demonstrating a certain generative model which, when

appropriately parameterized, approximately replicates human performance in some

cognitive task (e.g. categorizing novel objects, learning novel words, etc.). Our

framework is similar in that we interpret the model as a candidate hypothesis about how

infants represent stimuli. However, rather than identifying individual models which

approximately replicate infant behavior, our approach is to characterize a broader space

of possible models of a class of stimuli, and interpret qualitative claims regarding infant

knowledge as subsets of these models. This, we argue, provides a more precise way of

specifying qualitative hypotheses about infants’ knowledge, and can assist us both in

answering questions and identifying more useful (and tractable) questions to ask.

Our interpretation and use of rationalist assumptions in this chapter is somewhat

similar to the use of utility functions in economics and decision sciences. In particular,

economists are interested in people’s preferences, and how they act on those preferences

to make economic decisions. Of course, we cannot directly observe a preference, nor can

we directly observe the cognitive processes underlying decision making, so any attempt

to study this subject requires some assumptions regarding what an agent’s behavior

reveals about their preferences. To this end, the overwhelmingly common approach is to

model an economic decision maker as an approximately rational agent who optimizes

some personal utility function. This assumption is flexible enough to capture nearly any

pattern of decision making behavior, and provides economists and decision scientists
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with a unified language in which to formulate hypotheses about agent preferences, and

connect those hypotheses to predictions about agent behavior. We view the role of

rationalist assumptions in empirical cognitive science similarly: we are interested in the

knowledge and representations involved in infants’ behavior, but we cannot observe them

directly. We therefore assume that an infant’s behavior reflects some approximately

rational inference process over a representation (or space of representations) of the

relevant stimuli. This provides a unified language for formulating hypotheses about

infants’ cognitive representations, and connecting those hypotheses to predictions about

infant behavior.

4.4 Case study and simulations

Here, we illustrate our methodological framework in greater detail by simulating the

Woodward (1998) experiments. We demonstrate how to construct a formalized

hypothesis space of framework theories, interpret the experimenter’s original question in

terms of this hypothesis space, replicate the experiment via simulation, and use the

results of these simulations to better analyze and interpret the results of the original

experiment. Note that the main purpose of this initial demonstration is to validate our

framework against existing data and a qualitative interpretation of that data. We discuss

other potential applications of the framework more extensively in the next section.

4.4.1 Setting up the simulations

The first step is constructing a hypothesis space of candidate framework theories, which

we briefly outlined in 4.3.2. This construction has three parts: first, we identify the
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potentially relevant features, including observable stimulus features and latent features

which may be posited by the observer. For observable features, we use our three-feature

representation S = (s0, a, s1) described in 4.3.2. For this illustration, we restrict the

latent features to some subset of {g, βa, βg, βs1}, where g is a binary goal feature, and the

remaining variables are bias parameters for a, g, and s1, respectively. Second, we identify

constraints on hypotheses based on what we can reasonably assume about the observer’s

background knowledge. Finally, we define our hypothesis space as the set of all

structural models consistent with these constraints, along with each model’s

corresponding (possibly constrained) parameter space. This construction leaves us with

14 possible structural models and corresponding parameter spaces (see Appendix C1 for

a full specification of constraints and models). These correspond to the 14 framework

theories that we (the experimenters) consider as plausible candidates for the infant’s

theory of reaching actions. Our replication will therefore involve 14 sets of simulations,

one for each candidate theory.

The next step is to define our question of interest as a subset of this hypothesis

space. For this replication, our question of interest is: do infants encode reaching events

in terms of the arm-motion or the outcome? To formalize this, we must identify subsets

H1 and H2 which correspond to these two possibilities. This identification can be defined

in terms of a model’s dependency relation: an H1 or “motion-encoded” model contains

at least one of s0 → a or βa → a and cannot contain either s1 → a or g → a (i.e. actions

may directly depend on external circumstances and/or the actor’s internal biases, but

not on outcomes or goals). An H2 or “outcome-encoded” model contains at least one of

the arrows s1 → a or g → a (i.e. actions directly depend on outcomes or goals).

To model habituation, we simulate an observer with framework theory T (consisting
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of one of the 14 structural models and a uniform prior over the corresponding parameter

space) inferring an actor model M from a single repeated instance s of an actor’s

reaching behavior (i.e. the habituation stimulus). For each simulation, we plot the

observer’s “habituation rate” by plotting, for each habituation trial, the posterior

likelihood of the habituation stimulus according to the observer’s posterior distribution

(i.e. P (s|Sn) =
∫
P (s|Sn,M)P (M |Sn, T )).

To model the test phase, we apply a qualitative linking hypothesis: given the

observer’s posterior distribution P (M |Sn) after the nth habituation trial, we predict that

the observer will fixate on test stimulus t1 longer than t2 if and only if the posterior

likelihood of t1 is significantly lower than t2 (i.e. P (t1|Sn) << P (t2|Sn)). This connects a

hypothesis about the observer’s framework theory with a prediction about the observer’s

relative fixation times during testing. Note that, if our goal were to replicate

quantitative predictions or trends, we would need to perform a more rigorous parametric

analysis and comparison against existing results. However, given the qualitative nature

of the predictions we seek to replicate (preference for one stimulus over another), little

analysis is needed to perform the current validation of our framework. Additionally, we

can abstract away from methodological concerns about termination criteria by

simulating the test phase after each habituation trial, rather than waiting until a

termination criterion is reached. We plot the observer’s predicted test-phase performance

after each of a large but fixed number of habituation trials.43

43See appendix C2 for simulation specifications and C3 for examples of habituation and

test curves
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4.4.2 Results and analysis

Table 1 shows the compiled results from our 14 simulations (one for each framework

theory). In each row, a preference for the “new-goal” event indicates that the posterior

likelihood of the new-action event reaches at least 50% higher than the posterior

likelihood of the new goal event (and visa versa for “new-action”). While we do not use

explicitly coded habituation criteria (as we can simulate test results after any number of

habituation trials), the posterior likelihood consistently reached a 150% threshold of

initial likelihood after 6-9 trials across all simulations.

Table 1: Simulation results
Model Hypothesis Preference

h11 H1 New-action
h21 H1 None
h31 H1 None
h41 H1 None
h12 H2 New-goal
h22 H2 None
h32 H2 None
h42 H2 New-goal
h52 H2 None
h62 H2 New-goal
h72 H2 New-goal
h82 H2 New-goal
h92 H2 None
h102 H2 None

Based on these simulations, only one model (h11) regards “new-action” as more

unexpected, while five models (h12, h
4
2, h

6
2, h

7
2, and h82) regard “new-goal” as more

unexpected. This allows us to begin assessing the question posed in the original

experiment: do infants encode reaching actions in terms of the arm movement or the
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target object? Based on this table, we see that every model which results in a preference

for the new goal event belongs to H2. This validates the experimenter’s assumption that

an observer who attends longer to the new-goal test event encodes the habituation event

in terms of its outcome. Similarly, the only model which results in a preference for the

new-action event belongs to H1.

In addition to this initial validation, these simulations help us address some of the

concerns raised in section 4.2. First, we noted the difficulty of drawing conclusions about

an infant’s internal representations when the habituation and test stimuli differ along

inferred features, such as the actor’s goal. While the looking time data alone tell us

which stimuli appear more unexpected to the infant, this does not directly tell us how

the infant represents the stimulus, especially when some of the relevant features are not

directly observable. To this end, replicating an experiment in this framework helps us

determine what distinctions we can and cannot infer among candidate representations,

based on the data generated from that experiment.

In this case, we can rule out an action-encoded (H1) representation (and a subset of

outcome-encoded or H2 representations) for any infant who attends significantly longer

to “new-goal” Note, however, that among the models which develop a preference for

“new-goal,” one model (h12) does not involve a latent goal variable. Rather, model h12

identifies the goal with the physical outcome that follows the action (variable s1), and

predicts the action as a function of the initial state and target outcome. This

corresponds to a teleological model of intentional actions (Csibra & Gergely 1998), which

explains actions by relating them to physical constraints and outcomes through a

principle of rationality. A teleological model is often distinguished from a

causal-mentalistic model, which applies a similar principle of rationality, but involves a
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hidden mental state attributed to the actor. Under a causal-mentalistic model, the

actor’s goal is a distinct latent variable which causes the action (and therefore precedes

it temporally). Under a teleological model, the actor’s goal is the literal physical

outcome which explains or justifies the action. The results of these simulations

demonstrate that the Woodward (1998) experiments cannot distinguish between these

two possibilities. In order to make this distinction, one would need stimuli in which the

actor’s goal differs in some way from the physical outcome that follows (for example, see

Brandone & Wellman 2009). Thus, replicating the experiment in this framework helps us

clarify what inferences about infants’ internal representations are justified by a given

experiment, and what kind of experiments we need in order to make certain inferences.

A second challenge is distinguishing the expectations an infant acquires during

habituation from the expectations the infant acquired prior to the experiment. This

framework helps us separate these two kinds of expectations. To this end, note that our

simulations were performed with uniform prior distributions over all trainable

parameters. Intuitively, this encodes an assumption that the observer has no prior beliefs

or expectations regarding the actor’s biases. The results of these simulations solely

reflect the expectations the observer acquired during habituation, and therefore illustrate

the baseline expectations an observer would form in the absence of any prior

expectations. However, we can further determine the influence that an observer’s prior

beliefs would have by simply changing the prior distributions from which trainable

parameters are drawn. We can therefore use our framework to generate predictions for

observers with specific structural models, i.e. predictions of the form “if an observer’s

framework theory T consists of structural model M and prior expectations P , they

should prefer stimulus x over y after habituation to z.” By holding M fixed and varying
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P , we can predict the observer’s post habituation preferences for different stimuli.

Conversely, by holding some hypothesized M fixed and observing a subject’s

post-habituation preferences, we can infer properties of P , the agent’s expectations

formed prior to the experiment. Thus, by replicating habituation experiments in our

framework, we can help validate the reasoning underlying an experiment, clarify what

distinctions among candidate representations we can and cannot infer (and what

experiments we would need to infer a given distinction), and separate the influence of an

observer’s prior expectations from the expectations they acquired during habituation.

4.5 Conclusions and further applications

Because there are so few ways to obtain data relevant to infant cognition, most of our

knowledge comes from fixation time experiments. There are, however, some serious

concerns regarding their proper design and interpretation. As we have argued, there is a

gap in the relevant literature at the cognitive level: there are regression analysis models

for assessing practical questions of experimental design, and connectionist models for

exploring the neurological substrates underlying habituation. But, in order understand

how an infant represents a stimulus and what we can infer about this representation

from habituation experiments, we need an explicit model of the representations in

question. We believe that our methodological framework helps fill this gap by serving

three main functions. First, it helps us more precisely formulate hypotheses about

infants’ cognitive representations, allowing us to interpret qualitative questions as sets of

generative models. Second, it allows us to formalize linking hypotheses that depend on

stimulus complexity or unexpectedness, and thereby connect hypotheses to behavioral
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predictions. Finally, we can integrate these components to replicate and analyze fixation

experiments via a simulated version of habituation. As we saw in our case study, this

helps us determine what questions an experiment can answer, what inferences are

justified from a particular body of data, and what prior expectations or knowledge may

influence an infant’s performance in the test phase. In future work, there are several

applications of this framework to explore. While the case study in section 4.4 applied

our framework retroactively to existing data, we can also use the framework more

constructively: by formalizing a space of representations for given stimuli, and a linking

hypothesis connecting each representation to a behavioral prediction, we can determine

which representations can and cannot be distinguished through behavioral data before

an experiment is performed. We can then invert this reasoning to design stimuli that will

be most useful for answering a given question about infants’ cognitive representations. In

future work, we will explore the constructive potential of our framework for assisting

with design of experimental stimuli. Additionally, while this paper focuses on evaluating

hypotheses about infants’ representations under fixed experimental assumptions, we can

also use the framework to test the experimental assumptions themselves. We can, for

example, fix a single observer model of a stimulus and generate behavioral predictions

under multiple linking hypotheses. By comparing these predictions against human

infants’ responses to the same stimuli, we can assess which linking hypothesis best fits

experimental data (similar to the approach in Kidd, Piantadosi, & Aslin 2012). Finally,

we can perform robustness checks against variations in subjects’ intrinsic expectations,

by simulating a population of infants with a distribution of different prior expectations

and comparing habituation performance at individual and aggregate levels. This is

similar in application to the regression analysis framework outlined in Thomas &
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Gilmore (2004). Thus, this methodological framework provides a rigorous way to draw

inferences about a subject’s cognitive representations from their behavioral responses,

and can help address many of the methodological and theoretical challenges inherent to

studying infant cognition in particular.

5 Learning a Theory of Mind

Now that we have a methodology for empirical applications of our computational

framework, we turn our attention to theoretical applications. In particular, we explore

how we can use these models to provide theoretical justification for, and demonstrate the

plausibility of, a rational constructivist account of ToM development.

5.1 Defining the observer’s problem

Here we characterize the data the observer encounters, the inference tasks the observer

must perform over this data, and the constraints under which the observer operates

during this inference.

5.1.1 Data

Our aim is to model inference problems similar to the ones we face in our everyday social

experience. As we discussed in chapter 2, there is a wealth of experiments in

developmental psychology that assess how humans at various stages of development

reason about other agents, using carefully constructed instances of commonly occurring

social reasoning tasks. We shall draw on some of these experimental designs for the

general forms (though not necessarily contents) of the data, expressed in the MDP
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notation we presented in chapter 3. For example, Hilary et al (2012) construct a series of

animated videos to test joint belief-desire inference in children at different stages of

development. In these videos, an animated rabbit explores an environment with at least

one observable object, and at least one wall which potentially obscures more objects.

Children are then asked explanatory or predictive questions about the video (e.g: “based

on the video, does the Rabbit prefer cookies or muffins?”; “based on the video so far,

how do you think it will end?”). An example of such a stimulus (rendered as a grid

world MDP system) is shown in figure 5.1.1.

s0 s1 s2 s3

s4 s5 s6 s7

Figure 5.1.1: Example of a stimulus from a belief-desire inference experiment (Hilary et
al 2012), rendered as a trial observation for a grid world MDP system. Black cells denote
opaque walls. Arrow indicates direction of actor’s line-of-sight

Importantly, many social inference tasks require reasoning about false or

misrepresented beliefs, e.g. the classic “Sally-Anne” false belief task (and its many

variants) that we described in chapter 2. To translate data of this sort into MDP form,

we can modify the grid world system so that the grid layout itself may change during the
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trial (possibly as a result of the observer’s intervention, or another actor). An example of

such a translation is shown in figure 5.1.2.

s0

?

s1 s2 s3 s4

Figure 5.1.2: Grid world rendition of a “Sally-Anne” false belief task

For the scope of this dissertation, we shall make two simplifying assumptions when

designing simulated data sets. First, we shall assume that, for a given actor, any two

episodes of that actor’s behavior are conditionally independent given the (correct) actor

model.44 Second, we assume that each actor’s behavior is conditionally independent of

each other actor’s behavior, given the framework theory. This implies that the actors do

not interact with or encounter each other during their own episodes (or if they do

encounter other actors, those actors are not subjects of the observer’s inference). Note

that revoking these conditions would not pose a problem for the framework- rather, we

make these assumptions to constrain the scope of the current project.

44Note that this is not the case if we want the observer to learn/reason about how the

actor learns. While that is beyond the scope of the present dissertation, it can be modeled

using same basic machinery
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5.1.2 Inference tasks

For Level 1 tasks, we shall focus on behavior prediction and psychological explanation,

which cover a wide range of (but do not exhaust) the social inference problems we face in

real-life social experience. As with the simulated actor data, we will draw heavily from

experiments in developmental psychology when designing the observer’s Level 1 inference

problems. For example, if the data depict a single grid world Sally-Anne trial, the

observer may be required to either predict the actor’s final action (where will Sally look

for the muffin?) or provide a psychological explanation of the final action (what were

Sally’s psychological states, and how did they cause her to choose that action?). More

generally, behavior prediction tasks can vary in terms of the trial features to be

predicted, and the degree of accuracy required. For example, the observer may have to

predict the actor’s next action at each step, or simply predict the final state of the trial

(based on a few initial observations), or predict both the end state and the actor’s path

to the end state (based on a single initial observation).

Higher level tasks are defined in terms of the observer’s Level 1 performance. That is,

given the data and the tasks the observer must perform, the Level 2 task is to infer a

“good” actor model for the Level 1 tasks; i.e. a model which allows the observer to

perform the necessary tasks as well as possible, subject to the observer’s cognitive

constraints (see next section). Similarly, given data from across multiple actors and a set

of Level 1 inference tasks over that data, the observer’s Level 3 task is to infer a “good”

theory, i.e. a theory which entails “good” actor models.
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5.1.3 Constraints

We shall consider three kinds of factors which may constrain the observer’s inference.

The first kind are computational constraints: that is, what are the observer’s

computational resources? To this end, we shall assume that the observer can construct

and manipulate generative models in a functional PPL with marginalization operator

and conditioning operator. While this may seem like a strong assumption, functional

probabilistic programs are in fact a very general representation system, and can be used

to realize a number of popular cognitive modeling frameworks, including Causal

Graphical Models (Chater & Oaksford 2012) and Neural Networks (Goodman et al

2016).45 In addition to the core components of a functional PPL (stochastic primitives,

marginalization, conditioning, and recursive composition), we assume that the observer

may use the following in constructing programs:

• An accurate physics model for each MDP system in the data. This knowledge is

encoded in each system’s state-transition function and state-to-action function.46

• Some form of (discounted) utility-computation program, which computes the

(discounted) value of a sequence of actions given a value function over states. In

45Note that there is a straightforward way to interpret the problem of training a neural

network as an instance of Bayesian inference. In particular, if D is the data, W is the

parameter space of the network, and L is the loss function, we can interpret the problem

of training the network as maximizing the posterior probability P (W |D,L). The prior

distribution over parameters is determined by the regularizer
46Though a worthwhile extension of this framework is one in which the observer can

learn about the environment by watching the actor’s behavior
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grid world examples we have used so far, in which goals are defined in terms of a

single object or feature, this program reduces to the path-length program we used

in our example models.

• The primitive functions associated with specific variable types, i.e. the reference

function for symbolic “pointer” variables, the similarity function for

representational variables, and the value function for valuative variables.

The second kind of factor we consider are simplicity constraints, which determine the

observer’s preference between models that fulfill Level 1 task goals equally well (i.e.

pragmatically equivalent models). Simplicity is an important notion of philosophy of

science, and is especially relevant in cases (like this) where there are many (often

infinitely many) distinct models that “fit” the data equally well. There are a number of

ways to define simplicity measures, but a standard approach in the context of Bayesian

inference is to use the number of free parameters in a model as a proxy for simplicity (e.g.

Bayesian Information Criterion or Akaike Information Criterion- Myung & Pitt 1997).

In addition to being very straightforward to compute, this is often justified on the basis

that, given two models which fit a data set equally well, the model with fewer parameters

will have higher marginal likelihood than the model with more parameters (under certain

simplifying assumptions). Beyond this computational-level Bayesian justification, a

preference for models with fewer parameters fits our assumption that the observer has

bounded memory & representational resources. Since the parameters of an actor model

constitute the “trainable” part of the model, a model with fewer trainable parameters

will require less information to be learned, stored, and recalled for each individual actor.

To this end, we can define this simplicity constraint as a requirement on the
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observer’s over-hypothesis T = P (T ), where the framework theory T is itself a prior

distribution P (M) over actor models. In particular, we require that the over-hypothesis

P (T ) should prefer theories which prefer simpler models. I.e. if T1 = P1(M) and

T2 = P2(M) are two framework theories which support Level 1 tasks equally well, the

observer should prefer the theory that assigns more of its probability mass to simpler

actor models (i.e. fewer trainable parameters). In addition to the bias for fewer

parameters, we add a secondary “weak simplicity” bias for models that involve fewer

total distinct variables (we assume every model includes si−1, si, ai, and at least one

parameter). This preference is subordinate to the parameter bias, in the sense that if M1

has fewer parameters than M2, but M2 has fewer variables than M1, the observer should

prefer M1. But, if M1 and M2 have the same number of parameters, the observer should

prefer the one with fewer variables. This reflects that the observer has bounded

representational resources, and therefore prefers models that are less costly to represent.

Intuitively, the number of variables corresponds to the “cost” of storing the model

structure, and the number of parameters corresponds to the “cost” of storing the

actor-specific information (for each actor). Thus, the cost of additional parameters

increases proportionally with the number of actors being explained, while the cost of

additional variables is independent of the number of actors.47

The final factor is what we refer to as the “bias for determinism.” In particular, we

shall require that the observer’s framework theory T prefer actor models that allow for

47This is an oversimplification; the full cost depends on the representational and re-

lational structure of variables, and the domain of each parameter. However, proper

derivation of a single measure which balances all these factors is beyond the scope of

this dissertation
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more “deterministic” psychological explanations of behavior. Obviously, a fully

deterministic explanation of actor behavior is generally unfeasible, so we need to clarify

what we mean by a “more” deterministic explanation. To this end, recall that a

psychological explanation of a trial observation d corresponds to a posterior distribution

P (H|d) over the actor’s psychological states, given the trial observation (and model

constraints). The degree to which P (H|d) is more or less deterministic corresponds,

intuitively, to the “peaked-ness” of the distribution, i.e. the degree to which it assigns

most of its probability mass to a small number of possible configurations.48 While exact

measures of peaked-ness are a subject of some controversy in statistics (e.g. Westfall

2014), for the current project we can make do with a less precise notion. In particular,

given two models M1 and M2 which fulfill Level 1 task demands equally well, the

observer’s theory should prefer the model which assigns more of its probability mass to

fewer possible configurations of the psychological states.

A bias of this form plays an important role in keeping the observer’s inference

computations tractable. In particular, recall that Level 2 and Level 3 inference both

involve marginalizing out an actor’s mental states. That is, in order to compute the data

likelihood P (d|M) under a given actor model, the observer must expand this into the

weighed sum

P (d|M) =
∑

h∈HM

P (d|h,M)P (h|M)

This requires computing the prior probability of each possible configuration of the

hidden states h, and the likelihood of the data under that configuration. The exact

48Note that a “maximally peaked” distribution is deterministic, i.e. a single point mass

on one outcome
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number of computations required depends on the structure of the model: if a model has

several nested layers of hidden states, the marginalization computations may result in a

combinatorial explosion of likelihood computations. The bias for determinism helps

offset this in two ways. First, the fewer configurations of h which are allowable underM,

the fewer computations are required to compute these marginalizations (i.e. if the model

only provides two possible psychological explanations of a particular instance of

behavior, then this marginalization will only involve two components in the sum). Thus,

a bias for determinism will result in more tractable marginalization computations.

Second, an easy way to make these computations more efficient is to approximate the

marginalization with a MaP estimate (or a sum over a handful of the most likely values),

weighted by its MaP probability. In cases where this estimate is sufficiently accurate, it

represents a significant decrease in computation time, as it only requires a single

likelihood term to be computed. The bias for determinism therefore helps by

encouraging models for which MaP estimates (or “n-most-likely” estimates) are more

accurate. That is, distributions which are more deterministic (per our definition) can be

more accurately approximated by a handful of the most likely values.

While it may be possible to derive a single measure that encompasses all three kinds

of constraints,49 that is beyond the scope of this dissertation. Instead, we will focus our

analysis on trade-offs that occur between these dimensions and the Level 1 performance

of the model.

49A promising direction for this problem is the “resource rationality” framework (Lieder

& Griffiths 2020)
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5.1.4 Plan for this chapter

Now that we have characterized the observer’s inference problems, we shall spend the rest

of the chapter looking at “rational” solutions to these problems, and how those solutions

can be inferred. We will start by constructing a class of “minimal” actor models; that is,

the most basic kind of model that can fulfill Level 1 task goals subject to the observer’s

constraints. We shall demonstrate that solutions which include “value-like” hidden states

(i.e. a hidden state that shares certain functional and relational properties with our

commonsense concepts of “goals,” “desires,” or “values”; we refer to such states as

“G-states”) are “more rational” (per our definition) than solutions without such states.

This will require us to characterize the defining properties of G-states in a way that is

compatible with both our intuitive folk psychology and our formal framework.

Once we have established this minimal actor model, we will consider what kind of

data would drive the observer to revise or augment this model, and what kinds of

augmentations are rational. We shall argue that the rational augmentations include

hidden states that share certain functional and relational properties with our

commonsense concepts of “beliefs,” “perspective,” or “awareness” (we refer to these as

“B-states”). As above, we will have to characterize B-states in a way that is compatible

with our intuitions and our formal framework. In doing so, we will demonstrate both a)

a formal characterization of our commonsense psychological intuitions (i.e. possible

representational structures, functional relations, and algorithmic realizations), and b) an

explanation of how these commonsense intuitions are “rational” solutions to social

inference problems.

This analysis will provide a rationalist justification for why a BDA folk psychology is
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a “good” solution for social inference problems. However, it is not sufficient for

understanding how and why we acquire this sort of folk psychology. To make that leap

invokes an “ought implies is” fallacy: just because X is the solution we “ought” to

adopt, doesn’t mean that X is the solution that we will, in fact, adopt. To this end, we

will draw on Level 3 of our framework to motivate an account of how this learning might

actually take place. In particular, we will demonstrate how the domain-general inference

mechanisms defined for Level 3 can leverage this normative notion of rationality for

effective learning, and that the models which result from this learning process will

generally have a BDA-like structure. In this sense, we will use this chapter to show not

only that our BDA folk psychology is a rational solution to social inference problems, but

that we may in fact acquire our BDA folk psychology because it is a rational solution.

5.2 Building a minimal actor model

5.2.1 Why the observer is not a behaviorist

What are the minimal components required for an actor model that grants the observer

a reasonable degree of predictive accuracy over some agent’s behavior, subject to the

observer’s constraints? Obviously this will depend on the exact structure and contents of

the data, but we shall start with a minimal characterization: the data depict multiple

episodes of some kind of structured50 behavior, and there is no observable external force

that drives this behavior.51 Any model that can explain this data will require, at

minimum

50i.e. not uniformly random behavior, in which case there is nothing to learn
51The ability to distinguish between animate objects/agents (which are capable of self-

motivated action) and inanimate objects/non-agents (which are inert unless acted upon
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1. some kind of (posited) internal motivating force that generates behavior (otherwise

there is no behavior to predict), and

2. something to shape the behavior produced by this force (otherwise predictions have

no structure)

A very basic model (i.e. fewest hidden states, minimal representational/functional

complexity among hidden states) that provides these components is a “hidden-switch”

model like the one in section 3.5.3. Recall that this model is defined by a binary latent

state Mt, and a disposition parameter Θ. If Mt is “off,” the actor is inert, otherwise the

actor behaves according to their disposition θs for the current system state. In theory,

the predictive probability distributions over actions induced by any actor model could be

approximated arbitrarily well with the distribution induced by this hidden switch model.

In fact, we don’t even need the switch: rather than distinguishing between two (or n)

“modes,” we can define the parameter Θ so that, under certain state conditions S (the

conditions in which the actor tends to be “off”), the disposition Θ(S) (i.e. action

distribution) deterministically outputs “no action.” We can therefore, in theory, define

an actor model that does not attribute any hidden states, and simply attributes a

behavioral disposition parameter Θ. We can think of Θ as a table of action distributions,

one distribution for each possible system state.

Intuitively, a model of this form corresponds to a “behaviorist” folk psychology. That

is, rather than explaining the actor’s behavior in terms of posited psychological states,

an explanation of this form just is a set of behavior distributions, parameterized by Θ.

This disposition parameter is a function of the actor’s past stimulus-response history and

externally) appears to develop in early infancy (Woodward et al 1993)
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current state (shown in figure 5.2.1). A behaviorist framework theory is therefore a

probability distribution T (Θ) over possible behavioral disposition parameters. Given a

behaviorist framework theory T , the problem of inferring an actor model M from

actor-specific data D corresponds to estimating the probability that the actor will take a

particular action in particular state, given their stimulus-response history.

a formal characterization of our commonsense psychological intuitions (i.e. possible

representational structures, functional relations, and algorithmic realizations), and b) an

explanation of how these commonsense intuitions are “rational” solutions to social

inference problems.

While this sort of rationalist justification of our BDA folk psychology is theoretically

interesting, it is not su�cient for understanding how and why we acquire this sort of folk

psychology. To make that leap invokes an “ought implies is” fallacy: just because X is

the solution we “ought” to adopt, doesn’t mean that X is the solution that we will, in

fact, adopt. To this end, the in the final section of this chapter, we will draw on Level 3

of our framework to motivate an account of how this learning might actually take place.

In particular, we will demonstrate how the domain-general inference mechanisms defined

for Level 3 can leverage this normative notion of rationality for e↵ective learning, and

that the models which result from this learning process will generally have a BDA-like

structure. In this sense, we will use this chapter to show not only that our BDA folk

psychology is a rational solution to social inference problems, but that we may in fact

acquire our BDA folk psychology because it is a rational solution.

⇥
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Figure 5.2.1: Graphical representation of a “behaviorist” actor model, which attributes a
single (high-dimensional) “behavioral disposition” parameter and no hidden states

Given that models of this form can be parameterized to approximate any distribution

over observable behavior, why is it not “rational” for our observer to be a behaviorist?

Some would argue that an observer who adheres to traditional norms for rational

scientific inference should adopt a behaviorist model, and that a model which posits

additional cognitive structure is either more complex than necessary or inherently

unscientific (depending on the extremity of one’s views). B.F. Skinner presents a

compelling case for these views in Why I am not a cognitive psychologist (1977), in

which he argues that, because these posited cognitive states cannot be observed or

intervened on, they cannot be the subjects of empirically verifiable hypotheses, and

should therefore be of no concern to good scientists (or at least, good logical empiricists).

So, given that our framework is built on a notion of “rational inference over empirical

observations,” why should our observer not be a behaviorist?

To answer this question, we must consider the constraints and biases we described in
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section 5.1.3. In particular, we shall argue that

1. Cognitive actor models provide “simpler” explanations (fewer trainable

parameters) than behaviorist actor models. As a pragmatic consequence, cognitive

models can be trained more quickly from less data (for a particular actor).

2. While cognitive models include, by definition, more psychological variables than

behaviorist models, behaviorist explanations often require more total variable

information to predict future behavior.

3. Cognitive models provide more deterministic explanations of behavior than

behaviorist models

Thus, we shall demonstrate that an observer with the biases and constraints we describe

in 5.1.3 will generally have a strong bias for cognitive actor models over purely

behaviorist actor models. To illustrate the first point, consider the “hallway”

environment shown in figure 5.2.2.

. . .

1 nn-1

s0

. . .

1 nn-1

sn-1

?. . .

Figure 5.2.2: “Hallway” grid world environment, where n denotes the length of the hallway
(number of columns in the grid). We assume that in each trial, the actor starts somewhere
in the first column, moves right by one column in each step (up, down, or laterally), and
that the trial ends when the actor reaches one of the two treats on the other end
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Suppose the observer watches m trials d1, . . . , dm in variants of this hallway

environment, all involving the same actor, and then begins to observe a new trial

(involving that same actor) as it elapses. Suppose that the observer is asked to predict

the actor’s next action in this trial, given the initial segment s0, a0, . . . , st. The

behaviorist actor model is simply a parameter table Θ(s, histt), where s denotes the

current system state, hist denotes the actor’s behavior up to this point (in the current

trial), and Θ(s, histt) encodes the probability that the actor will move (laterally, up, or

down) in the next step. Thus, in order to do action prediction across these environments,

the actor must learn, store, and recall a distinct parameter for each possible

state/history configuration.52

Now suppose our observer has a simple cognitive actor model with a single hidden

goal state, a value parameter β, and another parameter δ (e.g. error rate, mind-change

probability, etc.). In section 3 we demonstrated several models of this form which would,

if appropriately parameterized, allow for accurate behavior prediction in these hallway

environments. For a given partial trial observation, the actor can predict the next action

by a) inferring the goal state g (or the posterior distribution over g), then b) using this

inferred value to compute the distribution over actions. The first computation involves

sampling from a distribution with one parameter β (or two parameters if this is a

“mind-change” model), and the second computation involves a deterministic

computation (computing a shortest path to the goal) and a probabilistic computation

involving another single parameter (error rate). These parameters are persistent across

52There are neural network techniques for learning behavior dispositions with fewer

parameters than the number of possible state/history configurations, though these still

require a significant number of trainable parameters relative to our cognitive actor models
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episodes and can be used to do action prediction in multiple environments. Thus, a

“cognitive” observer can make these predictions by inferring, storing, and recalling the

values of as a few as two parameters, while a “behaviorist” observer requires a parameter

for each state/history configuration. This also means that the behaviorist model will

generally require significantly more data in order to infer parameter values that lead to

accurate predictions. We illustrate this in a series of simulations, the results of which are

shown in figure 5.2.3.
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Figure 5.2.3: Results from a series of tests involving multiple hallway trials for a single
actor. In each test, we simulate a behaviorist observer and a cognitive observer inferring
an actor model over a data set of n trials (n=5, 10, 20, 40). We then generate 10 new trials
with the same actor and have each observer predict the final action in each trial. Results
reflect the predictive accuracy of each model (across the 10 test trials), given the number
of observations in the data. As the results clearly show, the cognitive actor model yields
more accurate predictions on fewer observations, demonstrating that the behaviorist actor
model requires more data to train its (significantly higher number of) parameters.

In addition to the strong bias for fewer parameters, the observer also has a weak bias

for models that require fewer total variables. In this sense, the behaviorist actor model

140



may seem to be weakly simpler, as it requires no hidden states to compute actions.

However, a hidden state can, in fact, reduce the total number of distinct variables

required to compute a future action in certain scenarios. This is due to the fact that

posited hidden states can “screen off” the dependence of future actions on past actions,

whereas the behaviorist model may require state/action information from arbitrarily far

in the past in order to accurately predict a future action. To illustrate this, consider the

partial hallway trial shown in figure 5.2.4. Given the system constraints, the actor must

either move diagonally up (to the muffin) or down (to the cookie) for the last action.

Suppose that the observer must predict this action.

1 n2

…

1 n2

… …

1 n2

…

n-1

s0 s1 sn-1 sn

?

Figure 5.2.4: Example hallway trial

In order to make this prediction, a behaviorist observer would need to consider the

action history for this trial up to now. Suppose, for example, that the actor started the

trial in the bottom row, and moved diagonally up in one past step, while moving

laterally (i.e. staying in the same row) for all other past steps. Intuitively, we should

expect the observer to take their final step upwards towards the muffin; if their target

had been the cookie, they would likely have stayed in the bottom row. In order for a

behaviorist observer to make this inference, they would need to “rewind” the current

episode to determine whether the actor started in the top, middle, or bottom row.
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Depending on the length of the episode, a behaviorist observer may need to look

arbitrarily far back in the past in order to make this inference.

s0 s1 sn-1

a0 a1 an-1

a formal characterization of our commonsense psychological intuitions (i.e. possible

representational structures, functional relations, and algorithmic realizations), and b) an

explanation of how these commonsense intuitions are “rational” solutions to social

inference problems.

While this sort of rationalist justification of our BDA folk psychology is theoretically

interesting, it is not su�cient for understanding how and why we acquire this sort of folk

psychology. To make that leap invokes an “ought implies is” fallacy: just because X is

the solution we “ought” to adopt, doesn’t mean that X is the solution that we will, in

fact, adopt. To this end, the in the final section of this chapter, we will draw on Level 3

of our framework to motivate an account of how this learning might actually take place.

In particular, we will demonstrate how the domain-general inference mechanisms defined

for Level 3 can leverage this normative notion of rationality for e↵ective learning, and

that the models which result from this learning process will generally have a BDA-like

structure. In this sense, we will use this chapter to show not only that our BDA folk

psychology is a rational solution to social inference problems, but that we may in fact

acquire our BDA folk psychology because it is a rational solution.

⇥

References

[1] Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants.

Trends in cognitive sciences, 14(3), 110-118.

[2] Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Modeling

64

?

s2

a2

…

s0 s1 sn-1

a0 a1 an-1

s2

a2

…

choose shorter paths, and then “rewind” the current episode to determine whether the

actor started in the top, middle, or bottom row. Depending on the length of the episode,

a behaviorist observer may need to look arbitrarily far back in the past in order to make

this inference. For a cognitive observer, however, this information is captured and

maintained in the hidden state g. That is, as soon as the actor first moves up from the

bottom row to the middle, the observer updates their estimate of g to reflect that the

actor is most likely targeting the mu�n, rather than the cookie. This hidden state is

then maintained as persistent part of the observer’s psychological explanation. When the

observer reaches the second-to-last state and needs to predict the final action, the

relevant information is already present in the inferred hidden state, so the observer does

not need to “rewind” the episode to make this prediction. Thus, the hidden goal state

posited by the observer e↵ectively “screens o↵” the past state/history information from

the current prediction, thereby reducing the portion of the ongoing episode that the

observer must “remember” in order to make predictions. This screening o↵ e↵ect can be

more easily visualized by looking at the dynamic graphical representation corresponding

to the inferred explanation (figure 4.2.3).
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a) Behaviorist explanation

b) Hidden-goal explanation

?

Figure 5.2.5: Psychological explanations of the trial in figure 5.2.4. Panel a) depicts the
behaviorist’s explanation, while panel b) illustrates a simple cognitive explanation. Note
that, under the behaviorist explanation, each action is dependent on the current system
state, parameter vector Θ, and each past action. That is, in order to determine whether
the actor will move up or down in the final step, the behaviorist observer must recall
whether the actor started in the bottom, middle, or top row. Under the hidden-goal
explanation, however, the goal state g “screens off” this past information, allowing the
observer to predict the final action without having to recall the actor’s past actions

For a cognitive observer, however, this information is captured and maintained in the

hidden state g. That is, as soon as the actor first moves up from the bottom row to the

middle, the observer updates their estimate of g to reflect that the actor is most likely

targeting the muffin, rather than the cookie. This hidden state is then maintained as

persistent part of the observer’s psychological explanation. When the observer reaches
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the second-to-last state and needs to predict the final action, the relevant information is

already present in the inferred hidden state, so the observer does not need to “rewind”

the episode to make this prediction. Thus, the hidden goal state posited by the observer

effectively “screens off” the past state/history information from the current prediction,

thereby reducing the portion of the ongoing episode that the observer must “remember”

in order to make predictions. This screening off effect can be more easily visualized by

looking at the graphical representations corresponding to the inferred explanations

(figure 5.2.5). Thus, even though the behaviorist model requires fewer hidden variables,

it ultimately requires more observable state variables to predict future actions.

In addition to these two factors, the observer’s bias for determinism encourages a

cognitive, rather than behaviorist actor model. To illustrate this, consider a series of

hallway trials (involving a single actor) in which the actor targets the muffin in 40% of

trials and the cookie in 60%. Under the behaviorist model, this is explained in terms of a

probabilistic behavior disposition: the actor’s first step will be a move towards the

cookie with probability .6, or a move towards the muffin with probability .4.53 Their

second action will be dependent on the first: in the first was the move towards the

cookie, the second will most likely also be a move towards the cookie, and visa versa.

Thus, by tracking the actor’s sequential behavior within each trial, and comparing

against past episodes in which the actor displayed similar behavior, the behaviorist

observer explains the episode as a sequence of inter-dependent, random outcomes, with

probabilities given by the actor’s past stimulus response history. Under the cognitive

model, however, the episode involves only a single random outcome, namely the actor’s

initial choice of goal at the start of the episode. Once the value of this hidden state is

53note that these two move sets are not mutually exclusive
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fixed, the rest of the episode is explained nearly deterministically (up to noise/error) in

terms of this single outcome. Thus, an observer with a strong bias for deterministic

explanations will be skewed towards cognitive, rather than behaviorist actor models.

5.2.2 Building a minimal (cognitive) actor model

The previous section illustrates why, for an observer who is bounded by certain

constraints and biases and faces certain inference problems, cognitive actor models (i.e.

those that attribute hidden states) provide more rational solutions than behaviorist actor

models (i.e. those that only attribute behavioral dispositions). Furthermore, in order to

be useful for within-trial inference, these hidden states must track (in some way, to some

degree) some observable feature of trial-specific data. So, what are the appropriate

features to track, and what is the appropriate way to track these features in hidden

states?

One important characteristic of episodic human behavior is its equifinal structure:

relative to the number of possible outcomes that are feasible within a given environment,

human behavior is organized around a small number of target outcomes. Importantly,

this is persistent across environments: an agent with persistent preferences/values will

regularly achieve the same distribution of outcomes across multiple environments (in

which those outcomes are equally feasible). This creates a detectable pattern in the data

which an observer can leverage to predict an actor’s future behavior. Indeed, the

equifinal structure of human behavior is thought to be an important perceptual cue in

how infants first learn to recognize agents and predict agent behavior (Gergely et al

1995), and may also play an important role in how we learn to sequence continuous

streams of behavioral data into discrete, episodic “chunks” (e.g. Buchsbaum et al 2012).
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In order to leverage this equifinal structure for behavior prediction, the observer’s

model needs a posited hidden state that tracks, either implicitly or explicitly, some

feature of the episode’s end-state (or a counterfactually possible end-state). We refer to

such states as “G-states,” and shall argue that this category of hidden states shares

important relational and representational features with our intuitive, folk psychological

notions of “goals/values/desires/etc.”54 There are several ways that a G-state can

encode this end-state information, either implicitly or explicitly. The “leanest” kind of

G-state is simply a predicted final outcome for an episode (or some feature of that

outcome). This corresponds to what is sometimes called a “teleological” action model

(Csibra & Gergely 1998), which explains actions in relation to their outcomes and

environmental constraints. Importantly, a teleological model is non-mentalistic, in the

sense that the hidden state is not attributed to the actor directly, but to the trial itself

(what is attributed to the actor is a tendency to achieve certain outcomes). An example

of an actor model with this form of G-state is shown in figure 5.2.6(a).

The next “leanest” form of G-state consists of a pointer to the actor’s intended

outcome (or some feature of that outcome). This is distinct from the previous form in

that this G-state is a psychological state directly attributed to the actor, whereas a

teleological G-state is a prediction about the outcome of the trial, and does not

correspond to an attributed psychological state.55 An example of an actor model with

this form of G-state is shown in figure 5.2.6(b). We can also define a “rich” version of

54Henceforth we shall use “values” to refer to this general folk-psychological category
55The practical importance of this distinction will become apparent in the section 5.2.4,

when we consider trials in which there is a mismatch between intended outcome and actual

outcome
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Figure 5.2.6: a) Example of a “teleological” actor model, which explains within-trial
behavior in terms of a predicted future outcome, but does not directly attribute any
psychological states to the actor. This model is parameterized by β, which captures the
actor’s tendency to achieve certain outcomes, and the action parameters θa. b) Example
of a “simple desire” actor model, which explains within-trial behavior in terms of a hidden
goal state, which “points to” the actor’s intended outcome. c) A “sequential sub-goal” or
“planning” model, which explains within-trial behavior in terms of a high-level goal G,
which necessitates a sequence of sub-tasks gt−1, gt, etc.

this form, in which the G-state consists of a representation of an intended outcome (or

some feature of that outcome), in conjunction with a program or similarity measure that

assess the degree to which an actual state matches or satisfies this represented outcome.

G-states may also be complex and hierarchically structured (e.g. Nakahashi et al 2016),

such as a sequence of sub-tasks which serve some higher level goal (shown in figure

5.2.6(c)).

On a computational level, we can encode each of these forms as a value function over
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states (or sequences of states, or sequences of actions). A simple predictor or pointer

G-state can be encoded as a binary value function v(s) which returns 1 if state s is the

state being predicted/pointed to (or has the relevant feature). The value function for a

representational G-state is defined by its similarity measure. A hierarchical G-state may

be defined by a single value function which measures the degree to which the high-level

goal is satisfied, and/or a sequence of value functions measuring the degree to which each

sub-goal is satisfied. Conversely, any value function over system states can be interpreted

as a G-state and used to construct an actor model. In reinforcement learning and control

theory, it is common to characterize agents in terms of a value or reward function, and

an action-selection “policy,” and there are a number of general inference algorithms for

learning an actor’s value function (e.g. inverse reinforcement learning- Abbeel & Ng

2004) and predicting an actor’s behavior from a general value function (e.g. Q learning-

Strehl et al 2006). While this general form is computationally sound, for our purposes, it

will be intuitively and notationally useful to distinguish between “sparse” G-states,

which assign non-zero value to only one or a handful of possible system-states (e.g. a

pointer or prediction), and “dense” G-states, which assign non-zero value to a large

proportion of possible system-states. If the G-states are sufficiently sparse (which they

will be for most of our examples), it it more convenient and conceptually clearer to

define them in terms of the particular states or features they pick out, rather than

specifying a full value function over states.

Now that we have defined G-states, and argued that any rational actor model must

include some form of G-state, we shall consider how these definitions line up with the

commonsense concepts of “values” (broadly construed) which play such a fundamental

role in our psychological explanations. Recall in section 2 we distinguished between three
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commonsense concepts that fall under this “value” category, which seem to loosely

demarcate different stages in the child’s developing understanding of actions. In

particular, we distinguished between

• drives, which consist of an internally motivated urge or attitude and have no

representational or referential content (e.g: “is thirsty”),

• desires, which consist of a target state/feature and a motivating attitude towards

that state/feature (e.g. “wants a glass of water”), and

• intentions, which consist of one or more desires and a structured plan for resolving

those desires, given the constraints of the surrounding environment (e.g. “is going

to get a glass of water from the kitchen”).

In the context of our definitions, we can define a “drive” as a value function that depends

only on features specific to the actor’s own bodily state. For example, we can encode

“thirst” as a value function that places high value on any state in which the actor has

had water, and low or zero value on any state in which the actor has not had any water.

This captures the motivating attitude that corresponds to a drive, but is non-intentional

in that it does not refer to or represent anything outside the actor itself. A “desire” can

be realized using a pointer to/ representation of the target outcome/feature. Note that

this means desires can be either representational or non-representational. Finally, we can

realize an “intention” using a hierarchical G-state, which represents the high-level desire,

as well as a particular plan (sequence of sub-goals) for realizing that desire in the current

environment. Thus, we can interpret our commonsense concepts of drives, desires, and

intentions as types of G-states. Though this does not mean that every possible G-state
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will correspond to a particular commonsense notion of “value,” the defining feature of

G-states (that they encode persistent end-of trial information for the purpose of action

prediction) is similarly fundamental to our commonsense psychological notions.

5.2.3 Reasoning with and inferring G-state models

Now that we have characterized the representational content and relational structure of

G-states, we must characterize how G-states are used to explain and predict behavior.

That is, how are actions determined by G-states (and system-states)? The fact that

G-states encode information about a trial’s (real or counterfactual) end-state imposes

several intuitive constraints on the form of these relations. In particular, an actor with a

particular G-state in a particular trial should be more likely to take actions which result

in the target state (or actions that result in higher-valued states). However, this is not

sufficient to predict the actor’s intermediate behavior, i.e. behavior in states from which

the target state is unattainable (by a single action). Intuitively, the end-state

information encoded in a G-state is, by itself, only sufficient to predict some property of

the (intended) final outcome of the trial, but not the path that the actor takes to that

final outcome. Predicting this intermediate behavior requires an additional constraint on

the model.

In human folk psychology, this constraint takes form of a “principle of rational

action,” which entails the intuitive rule than an actor will take the best possible action,

given their goals and current physical constraints. In most cases, “best possible” is

interpreted as “most efficient,” so for many environments (e.g. our grid world

environments), this principle reduces to “take the shortest path to the target
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outcome.”56 While the explanatory and predictive advantages of such a principle are

clear, it is less clear how we learn this principle. One possibility is that a principle of

rational action is part of an innate ToM “module,” which allows infants to perform

certain inferences about intentional actions, and provides a conceptual “scaffolding” for

the more mature theory of intentions that develops later in childhood. While there is

strong evidence that young infants form expectations consistent with a principle of

rational action (e.g. Gergely et al 1995, Philips & Wellman 2005), it is generally difficult

to establish that a cognitive capacity is “innate,” without either a) appealing to a strong

“poverty of the stimulus” argument or b) demonstrating empirically that the capacity is

clearly present from birth.

Due to the inherent challenges of infant cognitive studies (especially with extremely

young infants, i.e. 0-3 months), it would be difficult to design a study that establishes

knowledge of this principle in newborns, even if this knowledge is, in fact, present (in

some form) at birth. While it is therefore difficult to establish that the principle of

rationality is innate, it may be possible to give a poverty-of-the-stimulus counterargument

to the effect that something like a principle of rationality could be learned, given that

infants attend to the outcomes of episodic behavior (i.e. given that the observer posits a

G-state). Intuitively, this would involve first learning a “soft” principle of rationality,

corresponding to a general preference for shorter paths over longer ones.57

56For “dense” value functions, this is interpreted as maximizing the total discounted

reward of the trial, and we can derive the “take the shortest path” interpretation as a

special case of discounted utility maximization in which the utility function assigns non-

zero reward to only one state
57Alternatively, infants may generalize a soft principle of rationality from self-experience.
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For example, consider a framework theory which specifies a simple pointer G-state g

and an action-selection function af(s, g; θ) with the following computational form:

P (af(s, g; θ) = a) = σθ(1/Length(shortestPath(T (s, a), g))

where σθ is a softmax function with scale parameter θ, i.e.

σθ(xi) =
eθxi∑
j e

θxj

Note that j ranges over the set of possible actions, so the denominator is a normalizing

factor. Intuitively, the softmax function converts an unnormalized n× 1 vector of reals

into a probability vector. Thus, under an action function of this form, the probability of

taking action a in state g is inversely dependent on the length of the shortest path to g

for which a is the first step. The scale parameter θ determines the concentration of the

induced distribution: if θ = 0, then the resulting distribution is uniform, indicating no

preference between shorter or longer paths. Larger values of θ induce distributions that

are more heavily concentrated around higher input values. In the context of the

framework theory defined above, an actor with a θ value of 0 is indifferent between

shorter paths and longer paths, and is therefore equally likely to take any action that lies

on a path to the target. An actor with a high (>> 1) value of θ will take the shortest

That is, an infant may recognize that they typically take direct paths to their goals, so by

analogy other actors ought to do the same. While extrapolation from self-experience is

beyond the scope of our current framework, it is an important augmentation to consider

in the future
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path near-deterministically. An actor with a large negative value of θ will prefer longer

paths over shorter paths. This is illustrated graphically in figure 5.2.7.
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Figure 5.2.7: Example of the softmax action function defined above. Panel a) depicts a
system state in which the actor’s goal is the cookie. The table on the left indicates the
length of the shortest path to the cookie which starts with the corresponding action. Panel
b) depicts the actor’s action distribution from this state, for varying values of the scale
parameter θ. For θ = 0, the actor is equally likely to take any action. For higher values
of θ, the action distribution is more heavily concentrated on the shortest path. For high
values of θ, the actor will choose the shortest path near-deterministically

A framework theory of this form can be specified as a prior distribution over its

parameters P (θ, β), where β is a value parameter corresponding to G-state g. Given a

prior distribution over θ, and a cross-actor data set, an observer could learn a “soft”

principle of rationality by inferring a posterior distribution over θ. This is very similar to

the example in section 3.5.2, in which an observer learns that actors tend to have peaked
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or flat preferences, and can be performed with the same core program. In this case, the

observer learns whether actors prefer longer or shorter paths (or have no preferences

about path length). If the data depict actors who do, in fact, behave (mostly) rationally,

the observer will learn this by inferring a posterior distribution over θ that is

concentrated on high values of θ (strong preference for shorter paths). As the action

distributions in figure 5.2.7 illustrate, a framework theory concentrated on sufficiently

high values of θ will entail an “approximate” principle of rationality, i.e. the general

principle that actors will near-deterministically choose the shortest path to a goal (unless

some other factor intervenes). An example of this learning is shown in figure 5.2.8.

5.2.4 Developing and revising a G-state theory

In section 2, we reviewed experimental data showing that children develop an

understanding of intentional behavior gradually, rather than all at once, and that this

development appears to be loosely demarcated into several stages of understanding.

Given that there are many possible G-state models, with different predictive and

explanatory capacities, is it possible that these developmental stages reflect different

underlying models, and that developmental transitions between these stages reflect

inductive transitions in the child’s higher level theory? To investigate this possibility, we

shall consider the problem of “fulfilled vs. unfulfilled goal” understanding in infants (e.g.

Brandone & Wellman 2009, Bellagamba & Tomasello 1999). Recall the stimuli forms

used in Brandone & Wellman (2009), which extend an earlier design by Gergely et al

(1995): in the “fulfilled goal” condition, an actor navigates around a wall to pick up an

object on the other side. In the “unfulfilled goal” condition, the actor navigates around

the wall, but fails their attempt to pick up the object. In the test stimulus, the wall is
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Figure 5.2.8: Inferring a principle of rationality. All distributions shown as histograms
generated from 1000 samples. Panel a) depicts a uniform hyper-prior over θ, ranging from
−60 to 60. Panel b) depicts the framework theory inferred for a population of agents
who take the most direct path to the target object (up to 10% probability of error). As
expected, the posterior is heavily skewed towards high positive values of θ. Thus, the
observer has learned that these actors are nearly rational. Panel c) depicts the same
results over a population of “wandering” agents, who are largely indifferent about the
length of the path. This posterior is heavily concentrated around values of θ close to 0.
Panel d) depicts the inferred theory for a population of agents who prefer the “scenic
route.” This distribution is skewed towards large negative values of θ

removed, and the experimenters test whether the infant expects the actor to take a

direct path to the cookie (which was previously obstructed by a wall). Figure 5.2.9

shows a grid world rendition of these test stimuli.

All three age groups tested (10-, 14-, and 18- months old) consistently expected the

actor to take a direct (rational) path when habituated to the “fulfilled goal” condition

(which replicates and validates the results of Gergely et al 1995). However, only 14- and

18-month olds formed the same expectations from the “unfulfilled goal,” condition; 10
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Figure 5.2.9: Grid world rendition of the habituation and test stimuli used by Brandone
& Wellman (2009). In the habituation stimulus (panel a), the actor navigates around a
wall to pick up an object, which they either pickup successfully (“fulfilled goal” case), or
drop (“failed goal” case). In the test stimulus (panel b), the wall is removed, and the
actor takes either a direct or indirect path to the object and successfully picks it up. In
Brandone & Wellman, older infants (14- and 18-month olds) expected the actor to take
a rational path to the cookie, regardless of whether they were habituated to the fulfilled
or failed goal case. 10-month old infants who were habituated to the fulfilled goal case
also expected rational behavior in the test stimulus (which is the same result produced by
Gergely et al 1995), but those habituated to the failed goal case did not appear to form
strong expectations about the actor’s behavior in the test stimulus

month old infants who were habituated to the unfulfilled goal condition appeared to have

no strong expectations about the actor’s path in the test stimulus. One hypothesis as to

what drives this apparent transition is that younger infants rely on a non-mentalistic

“teleological” theory of intentional actions, which explains actions in terms of the

outcomes they produce, while older infants possess a mentalistic “goal” theory, which

explains actions in terms of a hidden psychological state that “points to” an intended

outcome. We can flesh out and evaluate this hypothesis using a version of the

“teleological” and “pointer” G-states described in the previous section.

155



To this end, we shall define two possible framework theories T1 (teleological) and T2

(goal-based). The first theory comprises two possible structural models: M0, which

constitutes an“irrational agent.” Intuitively, M0 is a simple behaviorist model which

corresponds to the explanation that the actor’s behavior is not a result of any

deterministic internal states, and that the only way to form expectations about the actor

is to tabulate the frequency of their actions in particular environments. The second

model is a teleological G-state model like the one shown in figure 5.2.6(a). This model is

parameterized by β, which captures the likelihood that a particular actor will achieve a

particular outcome in a particular environment, and ε, which captures the probability

that the actor will “drop” an item that they’ve attempted to pick up. Since the only

hidden state in this model is the predicted final outcome sT , the “mental update

function” for this model simply samples a value of sT from those outcomes that are

attainable from initial state s0, with probabilities determined by the preference

parameter β. The action function af(st, ST , ε) either a) deterministically outputs an

optimal action towards the predicted final state ST (if the actor is not currently in the

target location), or b) attempts to pickup the target object from the current location,

and successfully does so with probability 1− ε.

The second theory is nearly identical to T1, and consists of an “irrational” model and

and “rational” model. The difference is in the rational model: instead of computing the

action in terms of a predicted future outcome, the action is computed in terms of an

intended outcome, which points to, but is not identical with, a possible future outcome.

The intended outcome g is sampled at the start of the trial from among those attainable

from initial state s0, according to the same parameter β. The action is computed in the

same way as before (with the same probability of dropping an object), but takes the
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intended outcome g as input rather than the predicted outcome sT .

Since each theory contains two models, and the corresponding models share the same

parameter space, we can use the same set of parameter priors to define both theories. In

particular, we shall assume that the prior distribution P (M) between the two models

within each theory is heavily skewed towards the rational model (P (rational) = .9),

encoding the general knowledge that actors are much more likely to behave rationally

than not. The prior distribution P (β) is highly concentrated on probability vectors

which are highly concentrated on “salient” outcomes/target states (i.e. those that

involve reaching and picking up a particular object), and distribute a very small (but

non-zero) amount of their probability mass on “non-salient” outcomes (i.e. any other

possible system-state). This reflects the high-level knowledge that a previously unknown

actor in a previously unknown environment will most likely target some object in that

environment, but allows for the possibility of an “unusual” actor that targets other kinds

of system states (e.g. someone who just likes to stand next to walls). The prior

distribution over the error parameter P (ε) is assumed to be heavily skewed towards

small values, encoding the general knowledge that actors aren’t too clumsy, but will

occasionally drop something.

Given these two framework theories T1 and T2, we shall argue the following:

1. An observer with a teleological theory (T1), when presented with the habituation

stimuli in figure 5.2.9, will form expectations about the test stimulus consistent

with 10 month old infants in the Brandone & Wellman study (i.e. will expect

rational behavior if habituated to the fulfilled goal case, and will have no strong

expectations about the actor’s behavior if habituated to the unfulfilled goal case)
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2. An observer with a goal-based theory (T2), when presented with the same data,

will form expectations about the test stimulus consistent with older infants (i.e.

will expected rational behavior in the test stimulus regardless of the habituation

condition)

3. An observer with the constraints and simplicity biases we describe in section 5.1

will first prefer a T1 theory, but will gradually come to prefer a T2 theory when

presented with cross-actor data that depicts a higher concentration of mismatches

between intended and actual outcomes. That is, given cross-actor data depicting

(approximately) rational goal-seeking behavior, a rational observer will first prefer

T1 over T2, but will revise this preference as they begin to observe more

intended/actual mismatches in the data.

To illustrate the first two points, we can model the habituation experiment described

above as a two-stage inference problem, using the methodology we describe in chapter 4.

In the first stage, the observer must infer an actor model for a novel actor, based on a

single (repeated) episode of that actor’s behavior. In the second stage, the observer must

draw on this actor model to predict the actor’s behavior in a pair of new (test) stimuli.

We simulate this two-stage inference for two different observers, one with the teleological

theory defined above (T1) and one with the goal-based theory (T1). The results of these

simulations are shown in figure 5.2.10.

The results in 5.2.10 are divided into two columns- corresponding to the habituation

condition (fulfilled-goal or unfulfilled-goal)- and two rows- corresponding to the

observer’s theory (T1 or T2)- creating a total of four cells. In each cell, we depict results

from habituation-phase Level 2 inference problem (reporting the inferred posterior
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Figure 5.2.10: Results of simulated habituation experiment using a teleological theory and
mentalistic theory. Columns indicate theories and rows indicate habituation conditions
(“fulfilled” or “unfulfilled”). Each cell depicts two results. The first is the observer’s
posterior estimate that the actor is rational or irrational (according to that theory’s model
of rational behavior). The second is the observer’s expectation for the test trial (i.e.
probability that the actor will take a direct or indirect path). In the “fulfilled” condition:
both a teleological observer (column 1, row 1) and a mentalistic observer (column 2, row 1)
infer that the actor is very likely rational, and strongly expect the actor to take the direct
path in the test trial. In the “unfulfilled” condition: the mentalistic observer (column 2,
row 2) still infers that the actor is most likely rational, and still expects the actor to take
a direct path, while the teleological observer (column 1, row 2) infers that the actor is
most likely not rational, and forms no expectations about the actors test-phase behavior.

probability that the actor is rational, P (rational|d, T )), and the results of the

subsequent Level 1 inference problem (reporting the posterior likelihood of each test

stimulus, under the distribution induced by the inferred actor model).

In the fulfilled goal condition, both theories result in actor models with similar

parameter values. In particular, both models infer a high probability that the actor is

rational, both infer that the actor strongly prefers the one salient outcome (picking up
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the cookie) to any other outcome, and both infer that the actor has a low error rate.

Consequently, both actor models generate the same test-phase expectations, and place

significantly higher posterior likelihood on the direct, rather than indirect, test stimulus.

This is consistent with the expectations formed by infants in all three age groups in

Brandone & Wellman (2009) for the fulfilled goal condition. In the unfulfilled goal

condition, however, the inferred actor models are very different. Under the goal-based

theory, the observer still infers a high probability that the actor is rational, but infers a

different distribution over β and ε: in particular, β is skewed slightly (relative to the

prior) towards a preference for “other” outcomes, and ε is skewed more towards higher

error rates (relative to the prior). Intuitively, based on this single episode and the

observer’s (goal-based) framework theory, the observer has inferred that the actor likely

intended to pickup the cookie but dropped it, or the observer intended to drop the

cookie (though this explanation has lower posterior likelihood than the “mistake”

explanation). Based on this inference, the observer still forms strong expectations that

the actor will take a direct rather than indirect path in the test phase, consistent with

14- and 18-month old infants.

Under the teleological theory, the observer infers a high probability that the actor is

irrational, and a low probability that the actor is rational, but strongly prefers to drop

the cookie. Consequently, the observer forms no strong expectations about the actor’s

behavior in the test phase, resulting in similar posterior likelihoods for each test stimulus.

This is consistent with 10-month old infants in the Brandone & Wellman experiments.

To understand why this occurs, we must look at the computations involved in Level 2

inference. In particular, let T = {{M1,M2}, P (M), P (θ)} be one of the two theories

defined above (where θ = (β, ε)), and let d = {s0, s1, s2} denote the “unfulfilled goal”
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habituation stimulus. The observer’s problem in the habituation phase is to infer an

actor model according to its posterior distribution

P (M, θ|d, T ) ∝ P (d|M, θ)P (M |T )P (θ|M,T )

Here P (M |T ) denotes the prior probability that a new agent will have an irrational or

rational model, and P (θ|M,T ) denotes the parameter prior for each model. Since the

irrational model has no parameters,58 we assume this prior probability is 1 for that case.

As usual, we decompose the trial likelihood P (d|θ) into a product

P (d|θ) = P (s1|s0, θ)P (s2|s1, θ)

and each term P (si|si−1, θ) is computed by marginalizing out the hidden state h. For

this example, we distinguish between only two values of h: the one salient outcome C

(holding the cookie), and O for “other.” Thus, each term must be marginalized as

P (si|si−1, θ) = P (si|si−1, h = C, θ)P (h = C|θ) + P (si|si−1, h = O, θ)P (h = O|θ)

Under the teleological theory, however, the hidden state h just is a prediction of the final

58Note that the irrational model will never produce coherent expectations for the test

stimulus, as the irrational model simply tabulates the frequency of individual actions in

individual environments. Since the test-stimulus takes place in a distinct environment,

none of the frequency information captured during habituation transfers over to the test

stimulus. For this reason, we can make the notation much more compact by treating the

irrational model as if it has no trainable parameters
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state s2. This is a problem, as the final term in the trial likelihood is now

P (s2|s1, s2 = C, θ)P (s2 = C|θ) + P (s2|s1, s2 = O, θ)P (s2 = O|θ)

In this case, the likelihood function over the final state s2 is conditioned on its own

predicted value. Since P (x|x = c) = 1 for x = c and 0 for any other value of x, this

means that the term corresponding to the intended but not realized outcome (C) drops

out of the likelihood computation. Intuitively, because the teleological model uses a

predicted final state (as opposed to a counterfactual target state attributed to the actor)

to form expectations about behavior, the teleological observer does not recognize the

possibility that the actor intended one outcome but achieved another. Thus, the only

two explanations the teleological observer can infer for the unfulfilled goal trial are a) the

actor intended to pick up and then drop the cookie, or b) the actor is simply irrational.

This demonstrates that a teleological model, which lacks an attributed psychological

state, produces a similar pattern of expectations to those formed by 10-month old

infants, but not 14- or 18-month old infants, in Brandone & Wellman (2009), and a

simple goal-based model is consistent with 14- and 18- month old performance.

To address our third point, we must consider what would drive an inductive

transition from a teleological theory to a goal-based theory, which requires Level 3

inference. To this end, consider an over-hypothesis T for a single-model framework

theory, which specifies two possible model structures: a teleological model M1, as shown

in figure 5.2.6(a) (i.e. with a predicted final state in lieu of a psychological goal state),

and a goal-based model M2, as shown in figure 5.2.6(b) (i.e. with a posited psychological

goal state). Since M1 and M2 share the same parameter space, a single framework
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theory T consistent with this over-hypothesis consists of one of the two structures M ,

and a prior distribution P (θ) over the parameter space θ = (β, ε). The over-hypothesis

therefore specifies a prior distribution P (M) over models, and a hyper-prior P (P (θ)) for

θ. In keeping with the simplicity biases described in section 5.1, we shall assume that

P (M1) > P (M2). This is due to the fact that both models require the same number and

types of parameters, but only the goal-based model includes a posited psychological

state. Thus, in the absence of any evidence, the observer should prefer M1 over M2.

Given this setup, we can simulate the observer inferring a framework theory using

our Level 3 inference program. For simplicity of presentation, we set the program to only

return the posterior distribution over model structures, and marginalize out the

parameters. This allows us to visualize the posterior likelihood that the observer assigns

to each of the two categories of theories (model structures), rather than the joint

structure-parameter distribution. To construct the data for this experiment, we generate

a cumulative sequence of 6 data sets (i.e. each di contains all the observations in di−1).

Each data set depicts an equal number of trials for each of 5 actors. Each trial depicts

an actor navigating (possibly around an obstacle) to an object, then attempting to pick

it up, and possibly dropping it. In “fulfilled” trials, the actor may repeatedly pickup the

object until they are successful. In “unfulfilled” trials, the trial ends after the actor’s

first attempt (i.e. if they drop the object, they cannot pick it back up). To construct the

actor models, we draw β from one of two priors (flat preferences or peaked preferences),

and ε from a beta(.1, 1) distribution (skewed towards small error rates). We then apply

our Level 3 inference program with the over-hypothesis described above. The results of

this simulation are shown in figure 5.2.11.

The first two data sets depict only fulfilled trials, while each subsequent data set

163



0
0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

1,0 10,0 20,0 25,5 30,10 35,15 40,20

P(
Th

eo
ry

|D
at

a)

#Fulfilled, #Unfulfilled

Preference for teleological vs. mentalistic theory

T1 (teleological) T2 (mental istic)

Figure 5.2.11: Each pair of columns depicts the observer’s posterior degree of belief in
a teleological (T1) or mentalistic (T2) framework theory, for seven different data sets.
Each data set consists of an equal number of trials for each of 5 actors. In each trial, the
actor navigates towards an object and picks it up, either successfully or unsuccessfully (i.e.
drops the object and does not pick it up before the trial ends). The pair of numbers (x, y)
below each pair of columns indicates indicates the number of successful vs. unsuccessful
trials in that data set. We start with only successful trials, before introducing unsuccessful
trials (the data sets are cumulative). The first panel (1, 0) depicts the results after only
a single trial, which is very close to the observer’s over-hypothesis (i.e. prior preference
between theories).

increases the concentration of unfulfilled trials. For the first two data sets, the observer’s

posterior likelihoods roughly correspond to the prior likelihoods. This is expected, as,

both models can explain these data sets equally well, so the ratio of posteriors reduces to

the ratio of priors. The reason for this is the nature of the data: even though actors have

non-zero error rates (and may therefore make mistakes), the actors in these trials may

continue acting until they reach their goal condition; e.g. an actor who drops an object

may circle back to pick it up again. Since the teleological model explains the trial in

terms of the final state, it can still accommodate mistakes that the actor can fix. As we

introduce unfulfilled trials, however, the observer’s preference for the teleological model
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decreases, and they eventually come to prefer the goal-based model. This is due to the

fact that, in cases where the actor is unable to realize their goal, the teleological model

will always induce an explanation with low prior probability (namely, that the actor

intended to stand in the same location as an object, but did not want to pick it up, but

mistakenly picked it up and then put it back down). Even though both models can

explain completed trials equally well, the fact that the teleological model struggles to

explain failed-goal trials significantly reduces the data likelihood under that model,

which shifts the posterior probability away from M1 and towards M2. This suggests that,

initially, the observer will prefer the teleological theory, but as the observer is exposed to

more fail-goal trials, they will gradually shift away from a teleological theory and

towards a goal-based theory.

5.3 Adding beliefs

5.3.1 Why are G-states not enough?

As we saw in the previous section, G-state models, in conjunction with a principle of

rational action/utility maximization, allow for a wide range of inference and prediction.

Furthermore, G-states share important conceptual and structural features with our

commonsense notion of “values” (broadly construed to include desires, goals, preferences,

etc.). However, as we know from experience, values alone are often not sufficient to

predict or explain human behavior. From the developmental data, it is unclear at what

stage we first recognize this: on the one hand, classic False Belief tests (e.g. Wimmer &

Penner 1983) clearly show that younger children (< 4 years) struggle to explain mistaken

behavior in terms of false beliefs, a capacity clearly held by older children and adults.
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However, there is strong evidence that younger children possess some understanding of

how an actor’s epistemic access constraints their behavior. Two- and three- year old

children are clearly sensitive to an adult’s visual access when formulating requests (e.g.

will point out the location of a toy if the adult did not see it placed on a high shelf,

otherwise will simply ask for the toy- O’Neill 1996). Even infants display expectations

consistent with rudimentary false belief understanding (Onishi & Baillargeon 2005). This

suggests that our capacity to track and reason about the epistemic states of other agents

develops gradually, in conjunction with our capacity to track and reason about values.

On a theoretical level, it is worthwhile to ask why we cannot rely on G-states alone.

To this end, consider a two-stage inference problem like the one the previous section: in

the first phase, the observer must infer an actor model for a new actor from a single trial

observation, then apply that actor model to explain and reason about a second episode.

The two trials are shown in figure 5.3.1. For an observer with a mature BDA folk

psychology, these two trials have a straightforward, (near)-deterministic explanation: in

the first trial, the actor proceeds to the only treat they see (the cookie); once they reach

the cookie, they see the muffin, which they prefer over the cookie; once they reach the

muffin, they see the pie, which they prefer over the muffin. In the test trial, the actor

can immediately see the pie, and moves directly towards it.

How would an observer with a G-state model explain the initial trial in figure

5.3.1(a)? This of course depends on the form of the model. In figure 5.3.2, we show the

results of the two-stage inference process for each of three models. If the observer has a

fixed-goal model (i.e. one in which the actor’s goal is persistent throughout the episode),

the only explanation of this trial is that the actor sought the pie over the cookie and the

muffin, but made an unlikely sequence of errors resulting in a path significantly longer
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Figure 5.3.1: Two phase inference problem consisting of an initial trial observation (panel
a) and a test trial observation (panel b).

than necessary. The inferred actor model for this observation will therefore have an

unusually high error rate ε. Thus, under a fixed-goal model, the rational (MaP)

explanation of the initial trial (one with highest posterior probability) attributes a high

degree of randomness to the actor’s behavior, conditioned on their mental state. This

results in an actor model that provides less predictive power and more non-deterministic

explanations, and assigns lower posterior probability to the test trial.

If the observer has a mind-change model (i.e. one in which the actor is strongly

rational, but may change their mind during the episode), the explanation of this trial

involves two mind-changes; the first may have taken place at any point between the

actor’s first movement to the left and their final movement to the cookie’s location, the

second may have taken place at any point between the actor’s first movement toward the

muffin and final movement to the muffin’s location. As a result, a mind-change model
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Fixed goal model Mind change model Hierarchical goal 
model

Inferred parameter 0.45 (error rate) 0.8 (fickleness) .02 (error rate)

MaP goal estimate 
for trial 1 M [C,C,C,C, 

M,M,M,P,P,P] C—>M—>P

Posterior likelihood 
of trial 2 0.51 0.21 0.13

Figure 5.3.2: Results of two-stage inference for each of three G-state models. Each column
reports the parameter (error rate for the fixed- and hierarchical-goal models and, and
fickleness for the mind-change model) inferred from a single observation of the habituation
trial (figure 4.3.1a), a MaP estimate of the actor’s goal state for that trial, and the posterior
likelihood of the test trial (figure 4.3.1b). Under the fixed-goal model, the observer infers
that the actor targets the pie, but has a very high error rate, which reduces the posterior
likelihood of the direct path shown in the test trial. Under the mind-change model, the
observer infers that the actor made two mind-changes, and therefore has a high fickleness
value. This results in lower posterior likelihood of the actor not changing their mind in
the test trial. Under the hierarchical goal model, the actor has a low error rate and a 3
step goal sequence. However, the hierarchical model results in a less accurate estimate of
the actor’s values (since the set of possible goals is much larger), which results in a lower
posterior likelihood of the single-step sequence in the test trial

results in several different possible explanations, one for each configuration of goal states

compatible with the observation. Furthermore, a larger number of mind changes results

in both a higher posterior estimate of ν (the “fickleness” parameter), and a less accurate

posterior estimate of the preference parameter (since less preferred outcomes are more

likely when the goal state is resampled multiple times). These two factors result in less

predictive power and more non-deterministic explanations, and lower posterior likelihood

of both the initial and test trials.

The only G-state model which supports a deterministic explanation of the initial trial

is a hierarchical model. Under this model, the actor’s goal in the initial trial consisted of

168



three sub-goals, corresponding to picking up the cookie, the muffin, and the pie, in that

order, and the posterior probability of this configuration given the data is near 1.

However, the space of possible goals under this model is significantly larger than the

goal-space under the previous two models, so a single observation provides relatively

little information about the actor’s preference over goal sub-sequences. As a result, this

explanation does not generalize well to the test stimulus, which has relatively low

posterior likelihood under the inferred model

It is clear that the two trials in figure 5.3.1 are difficult to coherently explain using

G-states alone. In particular, G-states capture information about predicted or

counterfactually possible future system-states, but do not directly track how the actor’s

cumulative history of exposure to the relevant environment(s) constrain current behavior.

We refer to hidden states which track this latter form of information as “B-states,” and

shall demonstrate that B-states share important structural, representational, and causal

features with our commonsense notions of belief, awareness, perception, etc.59 To this

end, we must characterize B-states in the context of our modeling framework.

Like G-states, B-states can take several forms, which we describe in (rough) order

from leaner representations to richer. A “lean” B-state consists of a pointer to those

features in the current environment of which the actor is currently “aware.” This

awareness is updated in each step by adding a pointer to any new feature for which the

actor currently has perceptual access. This allows the observer to track which features

the actor is or is not aware of at time t, but does not require any structured

representation of these features (simply a reference or pointer). A “rich” B-state, on the

59We shall use the term “beliefs” to refer to this broad folk-psychological category,

though for this section we shall focus on perceptual B-states specifically
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other hand, is a representation of (some feature of) the actor’s epistemic state. The

richness of a B-state is, of course, a graded notion, corresponding to the level of

information and structural complexity captured by the representation. Importantly,

these representations may be underspecified, in that they specify a representation for

some part of the environment state, and leave the remaining part unspecified (indicating

that the actor is uncertain about the missing part). This uncertainty can also be

captured as a probability distribution over possible configurations of the missing

system-state information. Examples of lean and rich B-states for the actor in trial

5.3.1(a) are shown in figure 5.3.3

Trial data:

“Lean” B-state: [     ] [     ,     ] [     ,     ,     ] [     ,     ,     ]

“Rich” B-state:

?
?

?

??

?

?

s0 s1 s2 s3

?

Figure 5.3.3: Example of lean and rich posited B-states for each system-state in trial
4.3.1(a). Panel a) depicts the trial data. Panel b) depicts a lean B-state, which constitutes
a list of pointers to those features of which the actor is “aware” in each step. Panel c)
depicts a rich B-state, which constitutes an underspecified counterfactual representation
of the environment state

Fundamentally, any B-state requires two components:
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1. Some form of cumulative information state. We use bt to denote this state, and the

cumulative requirement entails that (some part of) the B-state must be dynamic

throughout each episode, i.e. the current bt must depend on past bt−1’s.

2. A perceptual access filter v(xt, wt), where we divide the system-state st = (wt, xt),

into a world state wt and actor state xt. Thus, the actor’s current bodily state (e.g.

where the actor stands in the environment, which direction the actor is facing, etc.)

relative to the physical world state (e.g. whether there are visual obstructions in

the actor’s line of sight) determines what information is added to the actor’s

B-state in each step. We use θb to denote the parameters involved in computing

the actor’s visual access (e.g. visual range, perceptual accuracy, etc.).

The modular nature of this modeling framework entails that we can construct B-state
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significantly improved predictive or explanatory power. To illustrate this, consider the

three actor models shown in figure 5.3.4, which we construct by grafting a B-state onto
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In theory, each of these models should have greater explanatory power than their

corresponding G-state-only equivalent. However, only the models in b) and c) provide

more coherent explanations of the trials in 5.3.1. To see why, note that, under the

fixed-goal model, the actor’s goal is sampled at the start of the trial, and remains fixed

throughout. Under the B-state-augmented version, this initial goal is dependent on the

actor’s initial B-state, rather than the initial system-state. However, unless the actor’s

visual access allows them to see through walls, the actor is not aware of the pie until the

171



st at

structure of human behavior is thought to be an important perceptual cue in how infants

first learn to recognize agents and predict agent behavior (Gergely et al 1995), and may

also play an important role in how we learn to sequence continuous streams of behavioral

data into discrete, episodic “chunks” (e.g. Buchsbaum et al 2012).

In order to leverage this equifinal structure for behavior prediction, the observer’s

model needs a posited hidden state that tracks, either implicitly or explicitly, some

feature of the episode’s end-state (or a counterfactually possible end-state). We refer to

such states as “G-states,” and shall argue that this category of hidden states shares

important structural and representational features with our intuitive, folk psychological

notions of “goals/values/desires/etc.”43 There are several ways that a G-state can

encode this end-state information, either implicitly or explicitly. The “leanest” kind of

G-state is simply a predicted final outcome for an episode (or some feature of that

outcome). This corresponds to what is sometimes called a “teleological” action model

(Csibra & Gergely 1998), which explains actions in relation to their outcomes and

environmental constraints.

✓a

�

An explicit G-state may consist of a predicted final outcome for the episode (or some

feature of that outcome), or a mental “pointer” to a target outcome/feature,44 or a

43Henceforth we shall use “values” to refer to this general folk-psychological category
44The distinction between a predicted future outcome and a mental pointer to a target

state is largely conceptual: the mental pointer is a explicit psychological state attributed

105

mu�n and final movement to the mu�n’s location. As a result, a mind-change model

results in several di↵erent possible explanations, one for each configuration of goal states

compatible with the observation. Furthermore, a larger number of mind changes results

in both a higher posterior estimate of ⌫ (the “fickleness” parameter), and a less accurate

posterior estimate of the preference parameter (since less preferred outcomes are more

likely when the goal state is resampled multiple times). These two factors result in less

predictive power and more non-deterministic explanations, and lower posterior likelihood

of both the initial and test trials.

The only G-state model which supports a deterministic explanation of the initial trial

is a hierarchical model. Under this model, the actor’s goal in the initial trial consisted of

three sub-goals, corresponding to picking up the cookie, the mu�n, and the pie, in that

order, and the posterior probability of this configuration given the data is near 1.

However, the space of possible goals under this model is significantly larger than the

goal-space under the previous two models, so a single observation provides relatively

little information about the actor’s preference over goal sub-sequences. As a result, this

explanation does not generalize well to the test stimulus, which has relatively low

posterior likelihood under the inferred model
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Figure 5.3.4: B-state models adapted from three G-state models which we’ve previously
used in examples. Panel a) depicts an awareness-constrained (AC) error-prone fixed-goal
model. θb encodes the parameters for the actor’s B-state update function, and θa encodes
action parameters (e.g. error-rate, preference for direct paths) Panel b) depicts an AC
mind-change model, and ν encodes the probability that the actor will resample their goal
upon encountering new information. Panel c) depicts an AC hierarchical goal model

third step. This means that the B-state augmented fixed-goal model provides no

coherent explanation of the initial trial.60 Thus, adding a B-state to the fixed goal model

only increases the observer’s capacity to explain intermediate behavior, under the

assumption that their goal is fixed throughout the trial.

60Though this does not mean it can’t explain the trial, only that the explanation is

convoluted and unlikely: e.g. the actor wanted the cookie, but made a long sequence of

mistakes and accidentally ended up with the pie, and then the trial ended before they

could go back to the cookie
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5.3.2 Inferring and reasoning with B-state models

There are two primary ways that B-states can influence and constrain behavior. The

first is directly, by constraining the actor’s set of possible moves at a given step to the

set of known moves. For example, there may be two possible paths from the actor’s

current location to a target state, but a rational actor will still choose the longer path if

they lack awareness of the shorter path. The second is indirectly, by influencing the

actor’s G-state. In particular, every time the actor’s B-state is non-trivially updated,

that constitutes new information about the actor’s environment which may be a relevant

input to the actor’s G-state update function. For example, if the B-state update includes

a new object of which the actor was previously unaware, this presents a new option that

the actor may choose from when determining a target outcome, and can therefore

resample their goal from the new set of possible options (including choosing an option of

which they were previously aware, but had not previously chosen).

The introduction of B-states also introduces the possibility of “epistemic” goals. In

particular, an AC actor may not have access to the full set of possible outcomes at the

start of a trial. In this case, the actor faces an exploit/explore dilemma: do they take a

shortest path to an outcome to which they already have epistemic access, or do they

continue exploring the environment in search more desirable outcomes? There are

several ways to encode this sort of trade off in an actor model. The most straightforward

is to augment the domain of the actor’s G-state to include an epistemic search goal,

which does not point to or represent any specific outcome. If the actor’s current goal is

search, their action function af(s, search) executes an “explore” procedure distinct from

the usual shortest-path-to-target procedure executed during rational goal-acquisition.
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The explore procedure itself may be structured and strategic, designed to maximize

relevant new information in as few steps as possible, or largely random, and the observer

can use Level 2 inference to learn about the actor’s search behavior specifically.

The G-state update function for such a model must determine when the actor should

continue searching, and when they should seek a known target outcome. There are many

ways to define and parameterize such a function. A simple method involves a “holdout

parameter” ν, which captures the actor’s willingness to “hold out” in search of a better

option. Given the set outcomes(B) of known possible outcomes in the actor’s current

B-state, the probability that the actor will continue searching in hope of a better

outcome is determined by ν ∗ valR(outcomes(B), β), where valR(outcomes(B), β)

measures the value potential of other outcomes which may be possible, but which are not

currently known to be possible. Intuitively, if the actor’s most preferred outcomes are

already known, there is a high probability that the actor will stop searching and pursue

one of those outcomes. If there are very high value outcomes which are not known to be

possible,61 the actor will be more likely to continue searching and “hold out” for a better

outcome. The holdout parameter ν scales the actor’s willingness to continue searching: if

ν = 0, the actor is completely unwilling to search, and will always pursue the first

possible outcome they discover with non-zero value. If ν = 1, the actor’s willingness to

continue searching for other options is exactly determined by the relative value of those

options. We can interpret an actor with ν > 1 as placing intrinsic value on exploration;

i.e. an actor with very high ν value may continue searching even if they have already

discovered all of their highest-value outcomes.62 An example of such an actor model is

61And are not known to be impossible
62In more general cases, where we represent the actor’s G-state as a value function
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shown in figure 5.3.5.

Given an actor model of this form, the observer can infer an actor’s willingness to

hold out in search of a better option via Level 2 inference. If the observer already has a

good estimate of the actor’s preference parameter β, the observer can track whether the

actor tends to move directly toward a high-value target as soon as they become aware of

that target (indicating a low ν value), or whether the actor tends to continue exploring

after discovering a high-value target (indicating a high ν value). If the observer does not

already know the actor’s preferences, they can use the same Level 2 program to infer a

joint distribution over both. These estimates will generally be correlated: if the β

estimate assigns higher value to outcomes which the actor does not immediately lock

onto (i.e. continues searching after discovering that outcome), this should correlate with

higher estimates of ν, and visa versa. That is, an actor who continues searching even

over states, we can encode epistemic goals by augmenting the G-state value function with

the actor’s intrinsic epistemic values. That is, we can design a single value function v,

parameterized by both the actor’s preferences over outcomes β and an epistemic value

parameter ν. The value v(s; β, ν) that this function assigns to a system-state s depends

on both the reward value of that state as an outcome (determined by β), as well as the

epistemic value of the new information that would be reaped in that state (determined by

ν). By encoding intrinsic epistemic values into the actor’s general value function, we can

avoid having to define two distinct “modes” of behavior (search and acquire), and instead

solve the actor’s explore-exploit trade off by maximizing the total discounted utility of

this single value function. However, as we will mostly confine our examples to those

involving sparse value functions, we will not fully explore this alternative in the scope of

this dissertation.
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outcome). This corresponds to what is sometimes called a “teleological” action model

(Csibra & Gergely 1998), which explains actions in relation to their outcomes and

environmental constraints.
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An explicit G-state may consist of a predicted final outcome for the episode (or some

feature of that outcome), or a mental “pointer” to a target outcome/feature,44 or a

43Henceforth we shall use “values” to refer to this general folk-psychological category
44The distinction between a predicted future outcome and a mental pointer to a target

state is largely conceptual: the mental pointer is a explicit psychological state attributed
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mu�n and final movement to the mu�n’s location. As a result, a mind-change model

results in several di↵erent possible explanations, one for each configuration of goal states

compatible with the observation. Furthermore, a larger number of mind changes results

in both a higher posterior estimate of ⌫ (the “fickleness” parameter), and a less accurate

posterior estimate of the preference parameter (since less preferred outcomes are more

likely when the goal state is resampled multiple times). These two factors result in less

predictive power and more non-deterministic explanations, and lower posterior likelihood

of both the initial and test trials.

The only G-state model which supports a deterministic explanation of the initial trial

is a hierarchical model. Under this model, the actor’s goal in the initial trial consisted of

three sub-goals, corresponding to picking up the cookie, the mu�n, and the pie, in that

order, and the posterior probability of this configuration given the data is near 1.

However, the space of possible goals under this model is significantly larger than the

goal-space under the previous two models, so a single observation provides relatively

little information about the actor’s preference over goal sub-sequences. As a result, this

explanation does not generalize well to the test stimulus, which has relatively low

posterior likelihood under the inferred model
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Graphical RepresentationModel specifications

continue exploring the environment in search more desirable outcomes? There are

several ways to encode this sort of trade o↵ in an actor model. The most straightforward

is to augment the domain of the actor’s G-state to include an epistemic search goal,

which does not point to or represent any specific outcome. If the actor’s current goal is

search, their action function af(s, search) executes an “explore” procedure distinct from

the usual shortest-path-to-target procedure executed during rational goal-acquisition.

The explore procedure itself may be structured and strategic, designed to maximize

relevant new information in as few steps as possible, or largely random, and the observer

can use Level 2 inference to learn about the actor’s search behavior specifically.

The G-state update function for

fG(Gold, [Bnew, Bold], �, ⌫):

if (Gold == search��Bnew > Bold){

return flip(⌫ ⇤ val(Bnew, �))?

search : categorical(vals: outcomes(Bnew), probs: �)}

else{ return Gold}

fa(G, B):

if (G == search){ return explore(B)}

else { return firstStep(shortestPath(B, G)}
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Figure 4.3.5: Example of an AC simple goal model. The G-state update function first
determines the probability that the actor will continue searching. This is determined by
the value of currently known possible outcomes, relative to the value of possible remaining
outcomes, scaled by a “holdout” parameter ⌫. If the actor’s current goal is set to search,
they execute a distinct explore procedure, depending on their current access B to the
environment. Otherwise, they execute a shortest-path search to a target outcome

after discovering a high-value target (indicating a high ⌫ value). If the observer does not

already know the actor’s preferences, they can use the same Level 2 program to infer a

joint distribution over both.

This characterizes how B-states can (directly or indirectly) constrain the actor’s

behavior. However, a B-state model also needs to specify how the actor’s B-states are

updated.

fB(Bold, s):

return extend(Bold, lineOfSight(s))
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Figure 5.3.5: Example of an AC simple goal model. The G-state update function first
determines the probability that the actor will continue searching. This is determined by
the value of currently known possible outcomes, relative to the value of possible remaining
outcomes, scaled by a “holdout” parameter ν. If the actor’s current goal is set to search,
they execute a distinct explore procedure, depending on their current access B to the
environment. Otherwise, they execute a shortest-path search to a target outcome

after discovering a more highly valued outcome must be more willing to continue

searching for other options.

This characterizes how B-states can (directly or indirectly) constrain the actor’s

behavior. However, a B-state model also needs to specify how the actor’s B-states are

updated. This depends on a “perceptual access” filter v(xt, wt), where we divide the

system state st = (wt, xt) into the world state (e.g. layout of the current environment)

and the actor state (e.g. actor’s current location and the direction they are facing). For

example, in the actor model shown in figure 5.3.5, this corresponds to the “line of sight”

function, which scans the actor’s line of sight, determined by their current position and

direction, until it reaches a wall or the edge of the grid. The B-state update function

then adds any newly discovered features to the actor’s previous B-state. The parameters
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in the perceptual access filter encode information about the actor’s perceptual

constraints: for visual access, this includes information like the actor’s visual range (e.g.

an actor with poorer vision might not be able to read a clock that is far away), visual

accuracy (e.g. an actor who is known to be red-green colorblind may miss certain

color-coded information), and other relevant constraints. Given a particular parametric

form for the visual access filter, these parameters can be learned via Level 2 inference.

More generally, it may be possible to adopt a generic, high-dimensional parametric form

(e.g. neural network) to learn v(xt, wt) in a model-free way.

Thus far, we have described how an observer can learn the parameter values for a

particular B-state model applied to a particular actor. A more fundamental question,

however, is how the observer infers that the actor is awareness constrained (AC) in the

first place. Intuitively, an AC actor produces distinctive behavioral patterns compared to

a non-AC (omniscient, or Omni) actor. Whereas an Omni actor should consistently take

a shortest path to a particular outcome, an AC actor will likely take a significantly

longer path to their final outcome, reflecting either their search for a path to the

outcome, or their search for better alternatives (or both). To illustrate how the observer

can leverage this to recognize that an actor is AC, we perform a series of simulations

involving a simple framework theory that contains two possible model structures: an

omni-rational error-prone goal seeker (who knows all of the possible outcomes and all

possible paths to those outcomes at the start of each trial), and an AC-rational

error-prone goal seeker, with a lean (list of features) B-state and holdout parameter. To

illustrate the stark distinction between AC behavior and Omni behavior, we generate a

data set using only 5 trials, generated by a single actor (who is, in fact, AC). The results

of this inference are shown in figure 4.3.6.
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Figure 5.3.6: Results of a Level 2 experiment to infer whether the actor is AC or Omni.
Panel a) depicts the inferred posterior probability that the actor is AC or Omni, which
is significantly higher for the AC model. Panel b) depicts the posterior distributions over
error rate, conditioned on each model type. The error distribution for the AC model is
skewed significantly toward lower values, while the Omni distribution is skewed towards
higher values. This reflects that the only way to explain this data using an Omni actor
model is to attribute an extremely high error rate to the actor

In addition to showing the posterior probability of each actor type (AC or Omni), we

show the posterior distribution over error rates associated with each model type. This

reflects that, although the Omni explanation is significantly less likely, it is still possible

to explain the data using an Omni model. This explanation, however, would require a

significantly higher error rate, as the depicted behavior often involves non-direct paths to

the final outcome. Thus, the only way to explain this data using an Omni model is to

assume that the actor is extremely clumsy. This means that the inferred Omni model

provides less predictive power and less deterministic explanations that the AC model, so

the observer strongly prefers the AC explanation over the Omni explanation.
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5.3.3 Developing and revising a B-state theory

As we described at the beginning of 5.3.1, the developmental data make it clear that our

ability to infer and reason about epistemic states does not emerge all at once. One

possible explanation of this gradual development is that younger children possess a

non-representational understanding of epistemic states, which tracks something more

primitive that full-fledged belief states. Intuitively, the younger child’s theory tracks an

actor’s epistemic access to/awareness of an environment, while the older child’s theory

tracks how the actor represents the environment.63 Thus, under this theory, the older

child’s performance in a false belief is possibly a result of additional representational

resources not available to the younger child. This is further supported by the observation

that younger and older children can track whether an actor is aware of an object, but

only older children can track how the object appears to the agent (Masangkay et al 1974).

To explore this possibility, we can model the two theories using lean and rich

B-states. As we described in the previous section, a lean B-state tracks the actor’s access

to or awareness of an environment: a simple way to encode this is as an n× 1 binary

vector b, where bi denotes whether or not the actor is aware of feature i.64 A lean B-state

is updated by changing bi to 1 whenever feature i is detected by the actor (which is

determined by their visual access function). A rich B-state tracks how the actor

represents the current state. This can be encoded as an underspecified representation of

the system, with “missing” entries to represent the actor’s uncertainty (e.g. the contents

of a closed, opaque box). It may also specific a probability distribution over the

63Or, more efficiently, the differences between the observer’s own representation of the

environment and the actor’s representation
64Or as a list of pointers to the known features, as shown in figure 5.3.3
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underspecified portion, capture the actor’s “degree of belief” for each possibility. The

actor’s visual access function determines the “portion” of the B-state that is updated in

each step.

The process through which a B-state constrains the actor’s behavior differs for lean

and rich B-states. For lean models, the B-state imposes a filter over the set of possible

actions. In particular, if a computation in the actor’s action-selection function requires

the value of feature i, and the actor is not aware of feature i, then the actor may not

take any action which requires this computation.65 For example, the goal-seeker models

we described in section 5.2 make use of a shortest-path program shortestPath(s, g),

which computes the shortest path from state s to a state with feature g. If the actor is

unaware of feature g at time t, the actor may not compute that path, and may only take

an optimal action by mistake (or as a search behavior). In a rich model, the B-state can

be “plugged into” the actor’s action selection function in lieu of the system state. That

is, the actor behaves as though the represented system state is the real system state, and

resolves missing values in that system state using the associated probability distribution.

Putting this all together, we can test the performance of lean and rich models in an

MDP version of the false belief task. Figure 5.3.7 shows the inferred B-states and

predicted final actions under the lean and rich B-state models. Under the lean model,

the actor’s B-state tracks which features (muffin, box, and basket) the actor is aware of

at time t. When computing the final action, the B-state indicates that the actor is still

“aware” of the muffin, and can therefore compute the shortest path to that target, thus

65Note that the actor may still take that action if they can compute it another way

without relying on the missing value. E.g. the actor could still take that move by accident,

or as a result of exploration behavior
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Figure 5.3.7: Explanation and final prediction for MDP false-belief test. Top panel depicts
inferred B-states and predicted final action under a lean model, which tracks the actor’s
awareness in a non-representational fashion. Bottom panel depicts inferred B-states and
predicted final action under a rich model, which tracks how the actor represents the system.
We represent the rich B-state as a difference between the observer’s own belief (an accurate
representation of the grid) and the actor’s belief

resulting in the “incorrect” prediction, which corresponds to the performance of younger

children. The rich model, however, tracks how the actor represents the environment. We

use “difference” notation in figure 5.3.7, by listing only those features which differ

between the actor’s representation and true system state. When computing the final

action, the actor targets the container which still (according to their representation)

contains the muffin (the basket). Thus, the rich model results in the “correct”

prediction, corresponding to the performance of older children.
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5.4 Discussion

In the first section of this chapter, we defined a set of social inference problems (in terms

of the data and task requirements), an inference agent with certain computational

constraints, resource constraints, and biases. We then showed, through analysis and

simulation, that:

1. Given the observer’s task demands, constraints, and biases, purely behaviorist

actor models require significantly more parameters than cognitive actor models,

and provide less deterministic explanations than cognitive actor models. Thus, a

psychological framework theory is a more rational solution than a purely

behaviorist framework theory.

2. In order to explain human behavioral data, a psychological framework theory must

include a type of hidden state (a G-state), which shares important functional and

representational features with our commonsense notions of desires/values.

3. G-states alone do not adequately explain certain kinds of behavioral data, and the

rational solution to this problem is to include another kind of hidden state (a

B-state) which shares important functional and representational features with our

commonsense notions of beliefs/awareness.

Thus, we have presented an argument to the effect that Belief-Desire-Action folk

psychologies are, in fact, rational solutions to social inference problems, which satisfies

the first goal we raised in Chapter 1. Furthermore, we were able to formalize the many

different conceptions and representations that fall under our commonsense concepts of

“beliefs” and “desires,” and demonstrate why (and under what circumstances) the
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rational solutions to social inference problems involve hidden states with these features.

In conjunction with our Level 3 inference framework, this illustrates the plausibility of

the notion that we develop BDA folk psychologies because they are rational, through an

(approximately) rational inference process. This addresses the second goal we raised in

Chapter 1.

To address the third goal we raised in Chapter 1, we drew on several well-known

examples from developmental psychology to motivate how certain transitions apparent in

our ToM development may reflect some form of rational theory revision. In 5.2, we

showed how a transition in infants’ expectations about goal-directed behavior can be

replicated by simulating an inductive transition from a non-mentalistic (teleological)

theory of goal-directed action to a mentalistic theory. We also demonstrated how an

increased concentration of “unfulfilled goal” episodes in the observer’s data could induce

such an inductive transition. Finally, in section 5.3, we addressed the hypothesis that the

differences between younger and older childrens’ performance in belief-inference tasks

can be explained by the “richness” or “lean-ness” of the attributed epistemic states. In

particular, we presented a “lean” form of belief state which captures certain information

about the actor’s epistemic access, but results in incorrect behavior predictions in a false

belief test. This suggests that our ability to reason about false beliefs may depend on

certain representational resources not available to younger children.
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6 Conclusions and future work

6.1 Summary

As we discussed in chapters 1 and 2, Theory of Mind is deeply entrenched in human

language and cognition, and understanding how ToM develops is important for

understanding human cognitive development in general. There is a wealth of data from

developmental psychology that tracks how ToM develops throughout childhood, but the

nature of these data make it difficult to explain, from a theoretical standpoint, how this

development occurs. On the one hand, the data show a clear and cross-culturally

consistent ordering in the mental reasoning skills that children acquire. On the other

hand, there is a relatively high degree of within-cultural and cross-cultural variability in

the ages at which different children acquire these skills. Furthermore, cross-cultural data

reveal a few noticeable deviations from the most typical developmental trajectories,

which seem to be tightly correlated with specific cultural or linguistic inputs. Thus, the

data reveal that our ToM development is clearly sensitive in some ways to our social

data inputs, but at the same time, that development very consistently results in the

same Belief-Desire-Action heuristic structure (though not necessarily in the same order).

This makes ToM development challenging to explain from a strictly nativist or empiricist

perspective.

To address these challenges, we proposed a computationally grounded rational

constructivist account, according to which ToM is essentially pieced together from

primitive conceptual components through a process that resembles approximately

rational hypothesis revision. We laid out a formal framework for developing such an

account in Chapter 3, which draws on the formal machinery of Bayesian Theory of Mind,
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Hierarchical Bayesian Models, and functional probabilistic programs. The models in this

framework represent a single observer agent learning and reasoning about one or more

actors. Importantly, our framework distinguishes between three hierarchical levels of

reasoning. Level 1 problems involve explaining and reasoning about a particular instance

of a particular actor’s behavior. Level 2 problems involve learning about a particular

actor’s general values, preferences, cognitive constraints, and behavior patterns, and this

knowledge is used as an input to Level 1 inference. Level 3 problems involve learning

about agent behavior in general from observations of multiple different agents. The

“framework theory” that results from Level 3 inference serves as a template for learning

a Level 2 “actor model,” and the Level 1 “trial explanation” inherits its structure from

the Level 2 model. The purpose of this modeling framework is two-fold. On the

empirical side, the models are used as a framework for interpreting data collected in a

cognitive-behavioral experiment, and assessing what we can infer about a subject’s

cognitive representations from their behavioral responses. On the theoretical side, the

models are used in simulation to demonstrate how and under what conditions certain

patterns of development are possible/plausible/likely.

In Chapter 4, we present a methodological framework for empirical applications of

these models. We focus in particular on infant studies for two reasons. First, the very

early stages of development are especially crucial for understanding human cognition,

and there is a wealth of experiments on ToM in infants. Second, infant cognitive studies

face some severe methodological challenges as a result of the extreme sparsity of data,

and our framework is highly useful for addressing these challenges. In particular, because

young infants cannot report or describe their own cognitive representations, we must rely

on a “linking hypothesis” which relates the infants’ behavioral response (typically visual
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fixation) to a cognitive process or representation. To this end, we demonstrate how our

framework can be used to simulate the standard two-stage visual habituation paradigm

under different cognitive representations, and compare the test-phase performance

against infants’ actual responses to the same stimuli. This provides theoretical

justification for a claim of the form: “A subject with theory (cognitive representation) T ,

if habituated to stimulus s, will show response a to test stimulus t.” We can then invert

this reasoning to conclude that a subject who does not show response a to test stimulus

t when habituated to s does not interpret the class of stimuli using theory T . We

illustrate how this principle can provide a more refined interpretation of infant visual

fixation data by replicating, in simulation, a seminal study into infants’ understanding of

goal-directed behavior (Woodward 1998).

In Chapter 5, we explore the theoretical applications of our framework by modeling a

hypothetical developing human child as a kind of social inference agent. This agent is

exposed to certain kinds of social data (using the MDP representation system), tasked

with certain inference problems (predicting and explaining actor’s behavior), under

certain computational and resource constraints, with certain inductive biases (for

“simple” and “deterministic” explanations). We then show, analytically and through

simulation, that given these problems and constraints, solutions (i.e. framework theories)

that share certain features with our Belief-Desire-Action (BDA) folk psychology are

more rational than those without. In particular, we show how

• “behaviorist” theories (i.e. those that do not posit hidden states) are less rational

(per our constraints) than “cognitive” theories

• “cognitive theories” require certain kinds of hidden states (G-states) in order to
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adequately explain human behavioral data, and these states share important

representational and relational features with our commonsense notions of “goals”

• G-states alone are not sufficient to explain certain kinds of behavioral data, and

the rational revision to this data involves adding a distinct type of hidden state

(B-states), which share important representational and relational features with our

common-sense notions of “beliefs.”

In addition to showing that BDA-like solutions are more rational than non-BDA

solutions, we drew on our Level 3 framework to demonstrate how a domain general

inference mechanism (simulation and sampling of hierarchical generative models) can

leverage this notion of rationality (encoded by certain biases in the observer’s prior

distribution) to “learn” a BDA-like theory of mind from cross-agent behavioral data.

Finally, we use our Level 2 and Level 3 framework to a) demonstrate that certain

transitions apparent in our ToM development may reflect different stages of underlying

framework theory, and b) motivate how these transitions may in fact reflect rational

theory revision in response to new data or constraints.

6.2 Future work

6.2.1 Improving the framework

While we have presented the foundations for a constructivist account of ToM

development, there are several aspects which need to be further developed in the future.

Fleshing out and unifying the observer’s constraints In chapter 5, we defined

several kinds of constraints on the observer which, in conjunction with specific task
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demands, determine a normative notion of “rationality” over the set of solutions

(framework theories/actor models/explanations). The first kind were computational

constraints, i.e. a set of primitive representations (e.g. system-state representations,

value functions, etc.) and a set of manipulations (recursive composition, marginalization,

conditioning) that the observer can perform over these representations. The second kind

were “simplicity” constraints, which we can think of more generally as a type of resource

constraint. The third kind were intrinsic biases, e.g. the observer’s bias for deterministic

explanations.

However, rather than fully specifying and unifying each of these dimensions into a

single measure, we only considered trade-offs and interactions along individual

dimensions. For example, we observed that behaviorist framework theories are both less

simple than cognitive theories and provide less deterministic explanations, but we did

not consider general interactions between simplicity and the capacity for deterministic

explanation, nor did we examine how simplicity and determinism may complement each

other/trade off in a way that can be leveraged to optimize task performance. In order to

perform this more rigorous and general analysis, we will need to both a) flesh out the

observer’s cost and simplicity constraints in greater detail, and b) unify the observer’s

different kinds of constraints into (ideally) a single measure that can be used in rational

optimization problems. The first part will involve a more detailed decomposition of the

observer’s total “resource” use: this includes the memory/information costs of retaining

a theory, the memory/information costs of retaining the actor-specific information used

to construct an actor model, the computational cost of inferring and manipulating an

explanation during Level 1 inference, etc. Thus, there are clearly many dimensions that

would need to be considered and integrated into a single “cost” measure.
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One promising framework for deriving and using such a measure is resource rational

analysis (Lieder & Griffiths 2020). The resource rationality paradigm extends the

rationalist approach to cognitive modeling to the algorithmic and implementation levels

of analysis. Under the standard computational-level approach, a rationalist model makes

minimal assumptions about the observer’s cognitive constraints, and is used to interpret

human cognitive behavior as an approximately rational response to some environmental

problem. The resource rationality approach seeks to explain human cognitive behavior as

a rational allocation of limited computational resources in response to an environmental

problem. The core components of an observer model in this framework are

1. An environmental problem (i.e. set of environments, observations in environments,

possible responses to each environment, value function over environment/response

pairs)

2. A set of possible programs mapping observations to actions

3. A measure of the “cost” associated with storing and using each program

4. A measure of the “value” derived from relying on each program in each

environment

Given these components, we can define the “rational program” for an environmental

problem as (roughly) the one which maximizes the observer’s lifetime performance in the

problem for the lowest possible cost. If we can express our observer’s problems and

constraints in this form, we can leverage the resource rationality approach to derive a

more rigorous, unified rationality principle for ToM inference. In order to do this, we
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must translate each of the four components listed above into the context of our

framework:

1. An environmental problem corresponds to the set of social inference problems faced

by the observer (data and tasks)

2. The set of possible programs is determined by the observer’s computational

resources, in this case a set of stochastic and representational primitive functions,

which can be composed and manipulated using stochastic recursion,

marginalization, and conditioning.

3. The observer’s simplicity constraints both translate into types of cost constraints

on programs. We previously suggested that the number of trainable parameters in

a model determines the cost of storing actor-specific information, while the number

of variables in a model determines the cost of storing the general model template.

This is an oversimplification, but serves as a useful initial direction for deriving a

proper cost function. We will additionally need to account for the domain of each

parameter and variable, and the expected number of parameters that are actually

needed for a given inference (e.g. a model may encode lots of preference and value

parameters, but only ever need a handful of those parameters at any given time).

4. The “value” derived from relying on each program must reflect both the value

generated by a particular response (e.g. the observer’s reward for a correct

prediction/penalty for an incorrect prediction), and the observer’s own intrinsic

values or biases, in this case a bias for determinism66

66Though it is possible that this bias could be accounted for purely in terms of the
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This outlines a path towards a more rigorous and unified treatment of the observer’s

constraints and biases.

Learning more complex theories The examples of Level 3 inference that we

presented in this dissertation dealt with fairly constrained problems consisting of either

a) learning a hyper-parameter for a theory or b) choosing between a handful of fixed

theories. This is useful for illustrating why an observer would prefer one theory over

another, but it does not fully address where the theories came from in the first place.

That is, how does the observer construct these candidate theories out of more basic

primitives? In Chapter 3.5, we suggested that Probabilistic Generative Grammars

and/or non-parametric priors can be used to “build” a theory of arbitrary complexity

out of component functions. If used for a Level 3 simulation with sufficient cross-actor

data, a PGG would allow the observer to perform such a construction, which would

provide strong justification that the candidate theories themselves could be learned from

data using the same basic mechanisms. We outline a simple PGG for rational actor

models in appendix B4, but there is a challenge that must be resolved in order to

generalize this further. This is the challenge of composing and modifying the component

programs that relate entities in a theory, and doing these compositions in a way that

guarantees the resulting program will run from end-to-end.

Suppose, for example, that our observer starts with a fixed-goal error-prone theory.

This theory uses a component program which computes the shortest path to the goal,

and (noisily) pursues that path. If the observer were to modify this theory by adding,

observer’s resource constraints, i.e. that the observer has a bias for determinism because

programs which entail deterministic explanations are less costly to store and use
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say, a REP variable corresponding to a belief state as an input to actions, the observer

must modify their action program to accommodate this new input. Thus, our PGG or

non-parameteric prior has to specify how each transformation to the model structure

modifies the affected component programs (i.e. any variable that gained or lost an input),

and it must specify these program transformations in a way that does not “break” the

theory (or at least, places extremely low prior probability on “broken” programs). In our

initial example, we attempted to do this by making an additional assumption about the

observer’s computational primitives: in particular, we added a primitive “expected

utility” function67 that the observer can use to compute the expected future value of a

particular action (weighted by the observer’s own estimates of the actor’s future actions).

This provides a sufficiently general program form that we can define a grammar which

modifies component programs as well as the corresponding model structures.

A more general approach, which would not require this fairly strong assumption,

would be to use the probabilistic grammar to generate the model structure alone, then

use an all-purpose function estimator (e.g. a neural network) to infer the programs that

link each component. Indeed, neural network techniques have been applied to social

cognition and Theory of Mind (e.g. Rabinowitz et al 2018), but these applications are

generally intended to show that neural networks can be trained to perform ToM tasks,

rather than showing how human beings do, in fact, learn to perform ToM tasks. While

deep neural networks are extremely flexible and can provide predictive accuracy in

practically any task, they are notoriously opaque68 and generally don’t reveal what the

67In the simple grid-world examples, this reduces to the path-minimization program
68While there is research into “opening the black box” of neural networks, many of

these post-hoc analysis techniques are specific to certain tasks and still require additional
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network has “learned” or what the network can tell us about human cognition. Due to

the generality of PPLs, however, we can define a PGG in which the component programs

mediating variable interactions all use a default function estimator form, without having

to change our framework definitions. Under this hybrid approach, Bayesian inference is

used to learn the “high level architecture” of the theory (i.e. the ontology of mental

states and dependency relations), and standard function-estimation methods can be used

to learn the low-level programs that mediate these states. This would allow us to define

a more general PGG without having to attribute strong prior knowledge to the observer

(e.g. the capacity to do discounted expected future utility computations). Intuitively,

this approach may allow us to simulate very complex theory-learning problems more

efficiently by marginalizing out the lower-level parameter and program information.

6.2.2 Empirical assessment of theoretical developmental hypotheses

In chapter 4, we presented a methodological framework for interpreting the data

generated by cognitive behavioral experiments using our computational models.

Importantly, the framework we presented was designed to test hypotheses about a

subject’s “intuitive theory” or representation of a class of stimuli by simulating Level 2

inference for a given intuitive theory. In particular, our framework allows us to simulate

how a rational observer with intuitive theory T (about a given domain of stimuli) would

respond to a test stimulus in that domain. Thus, this framework is useful for evaluating

a subject’s intuitive theory or representation of a kind of stimulus.

In chapter 5, however, we hinted at a methodology for testing a different kind of

hypothesis: in particular, the hypothesis that an observed transition in children’s social

human interpretation to make sense of in a general way
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reasoning capacities reflects an inductive revision in the child’s intuitive theory of mind.

At a high level, this methodology involves the following steps:

1. Identify a class S of ToM or social reasoning tasks in which children belonging to

age group X respond in a systematically different way than children belonging to

age group Y

2. Identify sets T1 and T2 of framework theories such that a rational observer with a

theory in T1 responds to a task in S like an X-year old, while a rational observer

with a theory in T2 responds like a Y -year old.

3. Use Level 3 inference to determine whether, and under what conditions, a rational

observer would transition from a theory in T1 to T2.

The third step can be applied in two directions: we can use theoretical insights to

identify, in simulation, factors which seem to induce an appropriate inductive revision,

then examine whether children encounter similar factors between the ages of X and Y .

In the other direction, we can draw on observations (or suspicions) about changes that

children seem to face between the ages of X and Y , then introduce these changes to our

observer to determine when it induces an appropriate revision. If we have reason to

believe, for example, that 5-year olds are able to pass false belief tests because they have

additional representational resources that 4-year olds have not yet developed, we can test

this in simulation by defining an observer with limited representational resources, and

observing how they respond when we exogeneously augment those resources.

The ultimate goal in this approach would be to identify a single inductive trajectory

that explains a large range of childhood ToM development (i.e. a long sequence of
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transitions that we observe throughout childhood), and replicate this trajectory in

simulation. Doing so would provide theoretical insights into the intuitive theories and

cognitive representations that children draw on in each stage of development, and we

could empirically assess each individual claim (i.e. that children with response pattern a

have theory T ) using the methodology from chapter 4. Fortunately, there is a significant

literature on scaling ToM tasks, and several groups of authors have developed sequences

of mental inference problems which seem to capture cumulative stages of children’s ToM

development (e.g. Wellman & Liu 2004). An obvious and fruitful direction for future

work is to identify inductive trajectories of framework theories which replicate these

scaled stages of development.
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Appendix A: Overview of WebPPL

In this appendix, we present the basics of probabilistic programming languages (PPLs),

and relevant details for the particular language we shall use (WebPPL).

A1: Basic syntax

WebPPL is an extension of a functional subset of Javascript, and therefore inherits much

of the Javascript syntax.

• Objects: An object is defined as a set of features, e.g.

var myObject={feature1 : value1, feature2 : value2, ...}

The value of each feature can be accessed using myObject.featurei.
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• Functions: New functions are defined using the syntax

var myFunction =function(inputs){
...

(code)

...

return output }

As a functional programming language, each computation must be within the

scope of some return statement.

• Conditionals: In WebPPL, the syntax A ? B : C reads as “if A then B otherwise

C.” This allows for compact conditional return statements, e.g.

var myFunction =function(x){

return (x > 2) ? true : false}

which returns true if x > 2 and false otherwise.

A2: Probabilistic programs and stochastic computation

Stochastic primitives and stochastic recursion

WebPPL extends a functional subset of Javascript with stochastic primitive functions.

For example, the primitive function flip(w) returns a sample from a Bernoulli

distribution with weight parameter w (i.e. 1 with probability w or 0 with probability

1− w). As a functional programming language, WebPPL does not support looping

statements (e.g. for, while), but these computations can still be performed using

recursion. For example, consider the following piece of code:
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var geometric = function(w) {
return (flip(w) ? 1 : 1 + geometric(w))

}

A call to geometric(w) returns 1 with probability w or 1 + geometric(w) with

probability 1− w, so this procedure corresponds to flipping a coin with weight w until

the coin lands on heads, then returning the number of flips. Thus, this program

explicitly defines a stochastic procedure for generating samples from a geometric

distribution with parameter w.

Distribution objects

A probabilistic program like the previous example defines an explicit stochastic

procedure for generating samples. However, such a program also implicitly defines a

probability distribution over return values (conditioned on input values). In WebPPL,

we can construct these implicit distributions as explicit distribution objects using a

higher-order “marginalization operator,” which transforms a sampling procedure into a

corresponding distribution object. This is done using the Infer operator, which has the

following syntax:

var myDist=Infer({model : f, options : infer opts})

Here, the model f is any nullary function, and infer opts specifies a method for

constructing the marginal distribution. WebPPL supports several different inference

methods, which we discuss in section A4 (though we ignore these details for now). For

example, we can rewrite our geometric(w) function within the scope of an Infer

statement as
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var geometric dist(w) = function(w){
return Infer(function(){

return geometric(w)
})

}
var myDist = geometric dist(w)

A call to geometric dist(w) returns a distribution object encoding the distribution

over return values of the sampling procedure geometric(w). We can then manipulate

this distribution object using built-in functions such as

• sample(myDist), which draws a single sample from myDist,

• myDist.score(x), which returns the score (negative log-probability) of value x

under the distribution myDist,

• viz.table(myDist), which generates a table of the joint distribution myDist.

In addition to the Infer operator, WebPPL also includes primitive distribution objects

corresponding to each stochastic primitive. For each primitive, the corresponding

primitive distribution shares the same name with a capitalized first letter. For example,

the stochastic primitive categorical({ps : [.3, .3, .4], vs : [0, 1, 2]}) returns a sample from a

categorical distribution over the values [0, 1, 2] with parameters [.3, .3, .4], while

Categorical({ps : [.3, .3, .4], vs : [0, 1, 2]}) is an object corresponding to the categorical

distribution itself.

Generative models in WebPPL

WebPPL is well suited for efficiently coding generative models. To illustrate, consider

the following frequently used example of a causal system:
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Figure 6.2.1: Common example of a causal system

This model defines a joint probability distribution over the variables C, S,R,W ,

which factors as P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R). In WebPPL, we can

encode this model as the following program:

var model = function() {
var C = flip(.5)
var S = C ? flip(.1) : flip(.5)
var R = C ? flip(.8) : flip(.2)
var W = (S&&R) ? flip(.99) : [(S||R) ? flip(.9) : flip(.01)]
return [C, S,R,W ]

}

Here, && and || denote the and and or operators, respectively, so the line

W = (S&&R) ? flip(.99) : [(S||R) ? flip(.9) : flip(.01)]

returns flip(.99) if S and R are both true, flip(.9) if one of S or R are true, and flip(.01)

if neither S nor R are true. Thus, the conditional probability tables in the above
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diagram can be encoded with a set of conditional coin-flips, conditioned on the values of

the corresponding parent variables. Given this program, the command model() returns a

sample of [C, S,R,W ] drawn from the distribution implied by this sampling procedure,

which corresponds to the distribution shown in the causal diagram of the system.

Note that, like the stochastic primitive flip(), the program model() defined above is

a procedure for drawing samples from the distribution P (C, S,R,W ), but the

distribution itself is only implicit in the return values of the program. However, we can

once again use the Infer operator to transform this procedure into an explicit marginal

distribution object. This is done as follows:

var distribution = function(){
var model = function(){

var C = flip(.5)
var S = C ? flip(.1) : flip(.5)
var R = C ? flip(.8) : flip(.2)
var W = (S&&R) ? flip(.99) : [(S||R) ? flip(.9) : flip(.01)]
return [C, S,R,W ]

}
return Infer(model())

}

In this case, the command distribution() returns the distribution object itself, and

we can then draw samples from this distribution using sample(distribution()), or

compute the log-probability of observing a particular draw [C0, S0, R0,W0] using

distribution().score([C0, S0, R0,W0]).
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Queries and conditions

The program distribution() defined above returns a joint probability distribution over

the four variables C, S,R,W . However, probabilistic graphical models are often used to

infer the values of some subset of variables (or compute the marginal probabilities of

those variables), given information about the values of other variables in the system. For

example, we may observe that the grass is currently not wet, and wonder whether the

sprinkler is on. WebPPL provides several higher-order functions for efficiently

incorporating observations into the marginal distribution. Suppose, following our

example, that we observe W = false, and we wish to compute the probability that the

sprinkler is on P (S = true|W = false). We can do this by modifying the above code as

follows:

var distribution = function(){
var model = function(){

var C = flip(.5)
var S = C ? flip(.1) : flip(.5)
var R = C ? flip(.8) : flip(.2)
var W = (S&&R) ? flip(.99) : [(S||R) ? flip(.9) : flip(.01)]
Condition(W == false)
return S

}
return Infer(model())

}

Note the two changes to this program: first, we add the line Condition(W == false),

which tells the Infer operator that the distribution is conditioned on W taking on a

particular value. Second, we change the return statement, so that we only return the

variable in which we are interested. Thus, the modified code returns a distribution
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object corresponding to P (S|W = false).

The Condition operator works well for simple discrete observations, but WebPPL has

two other built-in operators that allow for conditioning on observations. The first is

Observe(dist, val), where dist is a distribution object and val is the observed value of a

sample from that distribution. For example, if the command

Observe(Gaussian({mu: 0, sigma: 1), .01)

is within the scope of an Infer statement, the resulting distribution will be conditioned

on observing the value .01 drawn from a standard normal distribution.

The third built-in method for conditioning on observations is the Factor operator,

where Factor(v) adds the value v to the log-likelihood of the current iteration. Factor

can also be used with conditional statements, e.g.

Factor(condition ? true factor :false factor)

This operator allows for “soft” conditioning: if the above command is within the scope

of an Infer operator, then in each execution, Infer will add either true factor or

false factor to the negative log-probability of the current execution, depending on

whether condition is satisfied in that execution. Technically, Observe and Condition are

both written in terms of Factor: Observe(dist, val) is (usually69) equivalent to

Factor(dist.score(val)), and Condition(A) (where A is some binary valued statement) is

69certain Infer methods may process an Observe command in a more efficient way, but

this will not be relevant in the current project
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equivalent to Factor(A ? 0 : −Infinity). In many cases, however, Observe and

Condition allow for more efficient notation.

In general, suppose we have a program var model = function() { . . . }, which defines a

generative model over some set of variables X1, . . . , Xn. If we let query be any subset of

these variables, and conditions be a list of ordered pairs of the form (Xi, val(Xi)) (i.e. a

variable and an observed value of that variable), we can define a function that returns the

marginal distribution over the variables in query, given the observations in conditions:

var query model = function(query, conditions) {
var model = function() {

(. . . model specifications . . . )
Factor(Xi1 == val(Xi1)&& . . .&&Xim == val(Xim)) ? 0 : −Infinity)
return query

}
return Infer({model()})

}

The conjunctive conditional statement inside Factor checks whether the observations

in conditions match the values of the corresponding variables in the current execution.

Thus, this program returns the distribution P (queries|conditions), i.e. the joint

distribution over variables in queries, conditioned on the observations in conditions.

This modularity allows us to efficiently code marginal distributions for arbitrary

query/conditions combinations using a single model definition.70

70As we explain in the next section, this general form will not always be tractable, but

it at least demonstrates that the function for computing these conditional distributions is

well defined at the computational level
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A3: Interlude on inference algorithms

The previous sections provide a computational-level description of the WebPPL inference

functions we will use. However, as this project explores issues at both the computational

and algorithmic levels, it is important to have a basic understanding of the actual

inference methods. We shall describe the three main inference methods we shall use

here, so that we can later explore how these algorithms constrain the space of problems

that the inference agent can tractably solve.

Rejection sampling

The most conceptually straightforward inference method is rejection sampling, which has

syntax Infer({method: rejection, samples: numSamples}). With these options, the Infer

operator repeatedly runs the generative model and rejects any sample which conflicts

with a Condition statement (or any sample which includes a Factor(−Infinity))

statement, until numSamples samples are accepted. The operator then returns the

empirical distribution over accepted samples, weighted by any additional Factor scores.

While rejection sampling is conceptually straightforward, its efficiency depends on

the prior probability of the conditioning statements. Suppose our model includes a single

Condition(A) statement, and that the prior probability that a given sample will satisfy

A is p. The number of samples required to obtain a single compatible sample follows a

geometric(p) distribution, so the average number of samples required to obtain n

successes is n/p. If p is very low, this number can be prohibitively high, rendering

rejection sampling intractable for cases where the prior probability of a condition is very

low (e.g. if we condition the data on a single possible trial out of a very large number of
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possible alternatives). This will rule out rejection sampling for most of our programs,

but it is still conceptually important to understand.

Enumeration

Unlike sampling based methods, enumeration explicitly computes the probability of

every possible path in the model’s execution, weighting each path by the total Factor

scores incurred within that execution. This method has options

{maxExecutions, strategy}. The first option controls the maximum number of

(complete) executions to enumerate (the default is Infinity). The second option controls

the traversal strategy for enumeration (‘likely-first,’ ‘depth-first,’ or ‘breadth-first’). The

efficiency of this method depends on the total number of possible execution histories

compatible with the conditions, rather than the prior probability of those conditions.

Enumerate is therefore inapplicable to distributions involving continuous parameters,

which entail an infinite number of possible execution histories.

MCMC

This method performs a Markov Chain Monte Carlo (MCMC) random walk through the

posterior and returns the empirical distribution over points visited in this walk

(weighted, again, by appropriate Factor scores). The options for this method control the

total number of samples to propose, the burn-in (number of initial samples to discard

from the final distribution), lag (number of iterations to perform between samples), and

transition kernel. With the default transition kernel, the MCMC method performs a

standard Metropolis-Hastings (MH) algorithm, though WebPPL includes several built-in

kernels for MCMC inference (e.g. Hamiltonian Monte Carlo). Compared to rejection
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sampling, MCMC methods are significantly more robust to increases in the number of

possible execution histories and decreases in the prior probability of conditions (although

the algorithm still relies on rejection sampling to generate an initial sample with nonzero

posterior probability). However, because of the autocorrelation between consecutive

samples, the default MH algorithm may become “stuck” in certain cases, where it is

difficult to generate new samples with nonzero posterior probability, given the current

position of the sampler. This will become relevant as we get into level 2 inference

programs.

A4: Memoization and parameter inference

In computer science, memoization is a technique used to avoid repeating computations

that have already been performed. WebPPL includes a higher-order memoization

function mem(), which, when applied to a function f(inputs), returns a memo-ized

version of that function. The first time mem(f(x)) is called with a given argument x,

mem will compute and return the value f(x); on subsequent calls with the same

argument value, mem will bypass the full computation of f(x), and instead return the

value that was previously computed with the same arguments.

If f is a deterministic program, mem(f) represents the exact same input-output map

as f ; the former is simply less expensive to compute. If f is a stochastic function,

however, mem(f) will generally have a very different meaning (distribution over return

values) than f . For example, if we call flip(.5) multiple times, each call has an equal

probability of returning the values true or false. If we call mem(flip(.5)) several times,

the first call has an equal probability of returning true or false, but each subsequent call

219



will return the same value as the first call with probability 1.

The mem function is useful for generating persistently random features in generative

models. Suppose, for example, we wish to describe each agent in a model as either left-

or right-handed. A simple program for randomly determining this attribute would be

var handedness = function(person) {
return flip(.1) ? ’L’ : ’R’

}

If we apply this function to each element in the list [bob, alice, charles], it would

output a “handedness” value to each person. If, however, we called handedness(bob) a

second time, it would not necessarily return the same label as the first call, since each

call to handedness(bob) invokes flip(.1), which has a non-deterministic output.

However, suppose we memoize this function:

var handedness = mem(function(person) {
return flip(.1) ? ’L’ : ’R’

)}

In this case, the first call to handedness(bob) would assign a label to bob, and each

subsequent call with the same argument would return the same label. Note that the

argument person isn’t actually needed to compute the return value of the non-memoized

version of handedness; in this case, the argument is used only to index the return values

of the memoized function.

This technique is useful for models in which we have multiple parameters drawn from

the same prior distribution. For example, consider a scenario in which we have several

bags of marbles, each containing some distribution of five different colors of marbles. A
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single draw from each bag can be represented as a categorical distribution over five

possible outcomes, with one parameter for each color. We can use the mem operator to

define a program that generates a categorical distribution for each bag:

var makeBag = mem(function(bagname) {
return Categorical({

ps: T.toScalars(dirichlet(ones([5, 1]))),
vs: [blue, yellow, red, green, purple]})

})

Here, each parameter set for each Categorical distribution is drawn from a symmetric

Dirichlet prior with concentration parameter α = 1. By using the mem operator, the

first call to makeBag(′bagN ′) will generate a categorical distribution over colors for

bagN, and each subsequent call with input value bagN will return the same distribution.

Suppose we observe multiple draws from two different bags, and want to infer the

distribution of marbles inside each bag (i.e. parameters of the corresponding categorical

distribution). We can represent the results of learning in terms of a posterior predictive

distribution, i.e. a single hypothetical draw from each bag. We can do this using the

observe operator in conjunction with our memoized bag-generating function:
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var marble distribution = Infer(function() {
var bag1 = makeBag(bag1)
var bag2 = makeBag(bag2)
var data1 = [blue, blue, green, blue, blue, red, blue, purple, blue]
var data2 = [yellow, blue, blue, blue, green, blue, purple]
var observe data = function(datum, bagname) {

observe(makeBag(bagname), datum) }
mapData({data: data1}, observe data)
mapData({data: data2}, observe data)
return {bag1: sample(makeBag(bag1)), bag2: sample(makeBag(bag2)) }

})
viz.marginals(marble distribution)

Recall that the observe(dist, val) function adds the condition that the value val was

drawn from distribution dist. The mapData(data, function(d)) function returns the

array obtained by applying function(d) to each element in the array data, so these two

lines of code specify that the sequences data1 and data2 were drawn from the

distributions bag1 and bag2, respectively. Since each bagN is a categorical distribution

object, sample(makeBag(bagN)) returns a single draw from this distribution. Thus, the

function defined inside Infer returns a single hypothetical draw from each bag,

conditioned on observing the sequences data1 and data2 drawn from each bag, and

marble distribution is the object containing the predictive posterior distribution for each

bag. The last line of code allows us to visualize each marginal distribution in

marble distribution as a histogram of draws from that bag.

A5: Hierarchical models

WebPPL is well-suited for modular coding of complex hierarchical models. To illustrate

this, consider our bag-of-marbles example in the previous section. We have already
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shown how to infer the distribution of marbles inside a bag, given some observations (a

sequence of draws) from that bag. Suppose now that we observe a sequence of draws

from each of three bags, and we wish to generalize this knowledge to a fourth bag, from

which we have observed no draws. That is, given the inferred distribution of marbles

inside each of the first three bags, what would we expect the distribution of marbles to

be in a fourth bag that we haven’t observed at all?

We can modify the program in the previous section so that it a) includes a sequence

of observations from a third bag and b) returns the predictive posteriors of the first three

bags as well as a fourth, hypothetical bag:

var marble distribution = Infer(function() {
var bag1 = makeBag(bag1)
var bag2 = makeBag(bag2)
var bag3 = makeBag(bag3)
var bag4 = makeBag(bag3)

var data1 = [blue, yellow, green, blue, blue, red, blue, purple, blue]
var data2 = [yellow, blue, blue, blue, green, blue, purple]
var data3 = [blue, blue, red, blue, green, blue, blue]

var observe data = function(datum, bagname) {
observe(makeBag(bagname), datum) }

mapData({data: data1}, observe data)
mapData({data: data2}, observe data)
mapData({data: data3}, observe data)

return {bag1: sample(makeBag(bag1)),
bag2: sample(makeBag(bag2)),
bag3: sample(makeBag(bag3)),
bag4: sample(makeBag(bag4))},

})
viz.marginals(marble distribution)
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In this case, the last line of code will generate a histogram of hypothetical draws from

each of the first three bags, as well as a histogram of hypothetical draws from a

hypothetical fourth bag from which we have observed no draws. However, given the

above model, we should expect that, with enough draws, the histogram of the fourth bag

will be nearly uniform (and indeed it is). This is because the model in this program

learns a separate mixture for each bag, but does not learn any higher-level prototype or

common information about all four bags in general. This is akin to learning a prototype

for each of the classes sedan, convertible, SUV, etc. without learning the higher-level

prototype automobile. Thus, regardless of what we observe from the first three bags, we

should expect this model to produce a roughly uniform estimate of the marble mixture

in the fourth bag.

In order to perform the sort of generalization required here, we need to add an

additional level of abstraction to our generative model. Consider the following

modification of our program:
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var marble distribution = Infer(function() {

var prototype = T.mul(dirichlet(ones([5, 1])), 5)

var makeBag = mem(function(bagname) {
return Categorical({

ps: T.toScalars(dirichlet(prototype)),
vs: [blue, yellow, red, green, purple]})

})
var bag1 = makeBag(bag1)
var bag2 = makeBag(bag2)
var bag3 = makeBag(bag3)
var bag4 = makeBag(bag3)

var data1 = [blue, yellow, green, blue, blue, red, blue, purple, blue]
var data2 = [yellow, blue, blue, blue, green, blue, purple]
var data3 = [blue, blue, red, blue, green, blue, blue]

var observe data = function(datum, bagname) {
observe(makeBag(bagname), datum) }

mapData({data: data1}, observe data)
mapData({data: data2}, observe data)
mapData({data: data3}, observe data)

return {bag1: sample(makeBag(bag1)),
bag2: sample(makeBag(bag2)),
bag3: sample(makeBag(bag3)),
bag4: sample(makeBag(bag4))}

})
viz.marginals(marble distribution)

This model first generates a single “prototype” draw from a scaled Dirichlet

distribution, which is then used as a hyperparameter in the Dirichlet-Categorical

distribution used to model each bag. Thus, the concentration parameter is now a

learnable value, rather than a fixed vector. Because the fourth bag is generated using this
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same prototype, the model allows us to generalize our observations about the first three

bags to the fourth, even though we have not observed any draws from the fourth bag.

Running this program returns a histogram for the fourth bag that is heavily concentrated

on blue, and roughly uniform among other colors (as is consistent with our observations

of the first three bags). Furthermore, the extra level in this model enables faster learning

about the first three bags, as compared to the previous version with no shared prototype.

It is worth noting that that the conditioning and return statements in this program

are left unchanged. WebPPL allows us to add an extra hierarchical level to the model

without having to re-specify the whole inference procedure. This enables efficient,

modular construction of some very complex hierarchical distributions, and allows us to

represent learning at a very general level.

Appendix B: implementation of the computational

framework

Here we present the code and details for our implementation of the computational

framework described in chapter 3. Recall that Level 1 problems involve inference about a

single episode of a single actor’s behavior, Level 2 problems involve inference about a

single actor from one or more episodes of that actor’s behavior, and Level 3 problems

involve inference about actors in general from multiple episodes of multiple actors’

behavior.
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B1: Level 1

Data generation

A level 1 problem involves inference about a particular actor within a particular trial.

The complete data D for a single trial consist of two features, D.states = [s0, s1, . . . , st]

and D.acts = [a0, a1, . . . , at−1]. For the first set of examples we will use a set of

Gridworld environments in which each state has two features s.grid and s.inv. s.grid is

an n×m character grid, and the contents of cell i, j are determined by the character(s)

in that cell:

• ‘E’: empty (an actor can occupy and traverse this cell)

• ‘W’: wall (an actor can neither occupy nor traverse this cell)

• ‘X’: actor

• (any other character): other objects

The other feature s.inv denotes the actor’s “inventory;” objects can be added to this

inventory via the “pickup” action.

The dynamics of this gridworld environment are defined by two core functions:

states toActs : S → A, which maps a system state to the set of allowable actions from

that state; and a state-transition function T : S × A→ S, which maps a current state

and action to the next state.71 For these gridworlds, we use the action set

71If the state-transition function is deterministic, which it will be for most of our simula-

tions, we can technically do away with the action variable and transition function, instead

coding the agent’s action policy to directly output the next state. For our purposes it will

be notationally more convenient to retain the action variable as a distinct entity
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A = {0, 1, 2, 3, 4, 5}, where 0, 1, 2, 3 correspond to movement by 1 step up, down, left, or

right, respectively. 4 corresponds to the “pickup” action: if the actor shares a location

with any object O (represented as (‘X’,’O’) in the corresponding cell), then selecting

action 4 will add ‘O’ to the actor’s inventory (and remove it from that cell). The last

action 5 corresponds to ending the trial; this will generally occur when either the actor’s

goal is satisfied, or the actor exceeds a “maximum number of actions” cap, which we

encode as a parameter of the MDP system. These changes are encoded by the state

transition function T . The MDP itself is encoded as a System object, with features

System.s2A (states toActs), System.T(ransition function), and System.P(arameters).

To generate trial data, we need a “policy” to simulate an actor making sequential

decisions in one of our gridworlds. In the next section, we will explain how we can use

these policies to represent an observer’s hypothesis for explaining an actor’s behavior.

For the purpose of generating the data, however, we need only think of this policy as a

function p : S → A from states to (distributions over) actions. We impose the

requirement that p assigns at least one state in S to the terminal action 5 (though our

maximum action cap guarantees that the trial will halt even if all terminal states are

unattainable from the initial configuration of the system). We can then generate our

trial data with the following function:
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var generate trial = function(system, policy){
var iterate = function(states, acts){

var current state = states[states.length− 1]
var next act = sample(policy(current state))
if (next act == 5‖acts.length > system.cap)
{return {states : states, acts : acts.concat(next act)}}

else
var next state = system.T (current state, next act)
return iterate(states.concat(next state), acts.concat(next act))}

return iterate([system.init], [])}

The inner recursive function iterate takes a partial trial (sequence of n states and

n− 1 actions) and generates the next observation. If this observation is a terminal action

(or the number of actions exceeds the system cap), the function halts and returns the

current trial, otherwise it calls iterate again with the extended state list and act list.

Thus, the output of var D = generate trial(system, policy) is an object D with two

features: D.states (an array of state values) and D.acts (an array of equal length

containing action values). This object will serve as one of four inputs to the main

inference function, explained in the next section.

Inference

Level 1 problems involve inference and prediction about a particular actor in a particular

trial. This includes predicting future actions from initial observations, inferring the

values of mental states from observed actions (and prior knowledge about the actor),

counterfactual inference, and control-based reasoning. We will focus on action prediction

and mental inference here, but the other two types of reasoning involve the same

underlying computations over different inputs.
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In order to maximize the modularity of these programs, we define all forms of Level 1

inference using a single function with the following syntax:

trial inference = function (system, conditions, queries, actor model)

Each of these inputs is defined as follows:

• system = {T : transition,A: states toActs, P : parameters}, where A(s) returns

the set of viable actions from system-state s. For our first examples, parameters

consists of the single parameter cap, which imposes an upper limit on the number

of actions an agent may take in a trial.

• conditions = {stateInfo: [[ts1, sts1 ], . . .], actInfo: [[ta1, ata1 ], . . .]}. This input encodes

a partial observation of a trial, consisting of state observations and act

observations. The index tvi denotes the ith observation of variable v (note that tvi

and tvi+1 are not necessarily consecutive), and vtvi denotes the observed value of the

corresponding variable.

• queries = {states : [rs1, . . .], acts : [ra1 , . . .],mental : [[rm1 , type1] . . .]}. The queries

object is similar to the conditions object, except that it contains only index

numbers for each variable, and it may contain index numbers corresponding to

mental variables as well. This input denotes the information that is being

requested (i.e. the variables over which the output distribution is defined,

conditioned on the observations in conditions).

• actor model = {af : action function, uf : update function, p : params}. This

input defines the observer’s model of a particular actor. The first two features are
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an action function af(m, s; pa)→ a which maps a system state s and a mental

state m to a distribution over actions; and a mental update function

uf(m, s, pu)→ m′ which maps a (current) mental state m and (new) system state

s to a distribution over (new) mental states.72 Both of these functions rely on

actor-specific parameter values θa and θu, respectively; these parameter values are

stored in the params object, i.e.

params = {param1 : θ1, param2 : θ2, . . .}

At the core of the trial inference function is a recursive iterate function very similar to

the one in generate trial, but with three important differences. The first is that the

state values in states are split into two objects: the observable system states s states

and the unobservable mental states m states. Similarly, the policy(state)→ action

function is decomposed into two functions: af(s state,m state)→ action, which maps a

mental state and a system state to an action distribution, and

uf(m state, s state)→ m state,73 which maps a mental state and a system state to a

mental state distribution. Thus, these first two differences separate out the “mental”

part of the inference problem from the “physical.”

The third difference is that each execution of iterate(s states,m states, acts)

includes a Factor statement, which checks whether the most recently generated

72uf can also be used without a value for the m argument, in which case it generates

an “initial” mental state for that actor, given the initial system-state
73We encode the system specifications as part of the system-state argument s, which

allows us to define these functions in a system-general way
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observation in (s states, acts) matches or mismatches any observation in conditions. In

particular, the helper function check conditions(conditions, new ob) returns true if

either new ob matches with an observation in conditions, or the value of new ob is

missing in conditions, and returns false if new ob conflicts with an observation in

conditions. We then include the statement

Factor(check conditions(conditions, new ob) ? 0 : − Infinity)

inside the iterate function. The value −Infinity defaults to the maximum allowable

negative integer, so this effectively conditions the resulting distribution on those trials

that are consistent with the observations in conditions. Furthermore, multiple Factor

statements within the scope of the same Infer statement will stack additively. This

allows us to more efficiently execute the Infer operation, as any execution will halt as

soon as it first encounters a generated observation that conflicts with conditions.

With this intuitive overview established, the code for trial inference is as follows:
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var trial inference = function (system, conditions, queries, actor model){

//load system definitions
var T = system.transition
var A = system.states to acts
var cap = system.params

//load actor model
var af = actor model.af
var uf = actor model.uf
var params = actor model.paras

//construct trial model
var trial model = function (){

//inner recursive loop
var iterate = function (s states,m states, acts){

var current s = s states[s states.length− 1]
var current m = m states[m states.length− 1]
var next a = sample(af((current s, current m, params)))
var next s = T (current s, next a)
var new ob = {index: s states.length− 1, state: next s, act: next a}

//reject samples that violate conditions
Factor(check conditions(conditions, new ob) ? 0 : − Infinity)
var next m = sample(uf(current m, next s, params))
if (next a == 5 or acts.length >= system.cap)
{return[s states,m states, acts].concat(new ob, next m)}

else
{return iterate([s states,m states, acts].concat(new ob, next m))}}

var trial = iterate([system.init], [sample(uf(system.init, params))], [])
return get query info(query, trial)}

return Infer(trial model, {method: ‘enumerate’})}

The trial model function first loads the parameter values from actor model. It then

uses the recursive iterate function to generate a simulated trial for an actor with

actor model in the input system. The helper function get query info extracts the data
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requested in query from the simulated trial, and the Factor statements inside iterate add

−Infinity to the log probability of any simulated trial that conflicts with an observation

in conditions, effectively dropping any such trial from the computation. Thus, the

distribution returned by the final Infer statement corresponds to the conditional

distribution P (queries|conditions, actor model), which is precisely the information

required for Level 1 inference.

Actor Models

An actor model consists of a parameterized action function

af : (s state, w state; θa)→ P (acts), a parameterized mental update function

uf : (m state, s state; θu)→ P (m states), and a set params of parameter values, one for

each parameter in af and uf . In Levels 2 and 3, we will discuss how these actor models

are themselves inferred from data. To better illustrate how actor models are coded,

however, we present the programs that define the three example actor models shown in

chapter 3.4.

Error-prone fixed-goal Under an error-prone fixed-goal model (figure 3.4.1), the

actor’s mental state consists of a single discrete “goal” variable which points to a

particular object or feature in the current environment. The value of this goal variable is

sampled at the start of a trial, from those features or objects which are attainable from

the initial system state. The mental update function for this model is as follows:
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var uf =function(s,m, β){
if (m ==undefined){

var targets = objects(s)
var values = filterV alues(β, targets)
return Categorical({vals: targets, probs: softMax(values)})

}
else {returnDelta(m)}

}

The β parameter is an n× 1 vector of non-negative reals, where βi denotes the value

that the actor would derive from obtaining object i. If the m argument is empty (i.e.

when uf is first called to initialize the actor’s mental state), the program identifies the

set of objects attainable from the initial system state, and pulls out the value parameters

associated with those objects. It then normalizes those values into a probability vector

using a softMax transformation, and returns a categorical distribution over the set of

attainable objects. Thus, the probability that the actor will target object i is directly

dependent on the value that the actor would derive from obtaining object i. In each

subsequent step, the function returns a Delta distribution concentrated on the previous

goal value.

The action-selection function for this model is as follows:

var af =function(s,m, ε){
var optMoves = pathF inder(s,m)
var optProbs = repeat(optMoves.length, 1− ε)
var subMoves = remove(states toActs(s), optMoves)
var subProbs = repeat(subMoves.length, ε)
return Categorical({vals: optMoves.concat(subMoves),

probs: optProbs.concat(subProbs)})
}
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Under this program, the actor computes the shortest path(s) from their current

location to the location of the goal object, and takes either a) a step along one of the

shortest paths to the goal (sampled uniformly at random if there are multiple shortest

paths) with probability 1− ε, or b) a random “sub-optimal” step with probability ε. The

structure of this actor model is defined by the two programs af and uf defined above,

and the parameter space consists of the value parameter β and the error parameter ε.

Deterministic mind-change Under a deterministic mind-change model (figure

3.4.2), the actor’s mental state consists of the same discrete “goal” variable as in the

error-prone fixed-goal model. Unlike the previous model, the actor may change their

mind in each step, with probability ν (the “fickleness” parameter). The mental update

function for this model is as follows:

var uf =function(s,m, β, ν){
if (m ==undefined‖flip(ν)){

var targets = objects(s)
var values = filterV alues(β, targets)
return Categorical({vals: targets, probs: softMax(values)})

}
else {return Delta(m)}

}

The action-selection function for this model is similar to the function for the previous

model, but will always return an optimal step towards the current target object with

probability 1:

var af =function(s,m){
var optMoves = pathF inder(s,m)
return UniformDraw(optMoves)

}
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Awareness-constrained rational Under an awareness-constrained model (figure

3.4.3), the actor’s mental state consists of a discrete goal variable and an awareness

variable, which consists of a list of features of which the actor is currently aware (and the

location of each feature). The mental update function for this model first updates (or

initializes) the actor’s awareness state, then updates (or initializes) the actor’s goal based

on their new awareness state:

var uf =function(s,m, β, ρ){
if (m ==undefined){

var A = line of sight(s, ρ)
var targets = objects(A)
var values = filterV alues(β, targets)
var goalDist = (targets.length == 0)? Delta(‘search’):

Categorical({vals: targets, probs: softMax(values)})
return {a: A, g: goalDist}

}
else{

var newA = extend(m.A, line of sight(s, ρ))
if (newA == m.A){return Delta(m)}
else{

var targets = objects(A)
var values = filterV alues(β, targets)
var goalDist = (targets.length == 0)? Delta(‘search’):

Categorical({vals: targets, probs: softMax(values)})
return {a: newA, g: goalDist}

}
}

}

This program first updates (or initializes) the actor’s current awareness state by

adding the ID and location of any new features detected via line of sight(s, ρ). This

helper function scans the actor’s line of sight until it a) reaches the edge of the grid, b)

hits a wall, or c) exceeds the actor’s visual range, encoded by parameter ρ. If this
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function detects any new objects, the actor resamples their goal state from the set of

objects in their new awareness state. Otherwise, the function returns the same goal

state. If the actor’s current awareness state does not include any potential target object,

the function sets the goal state equal to ‘search,’ which specifies that the actor should

execute a search behavior. If the actor’s current goal state is ‘search,’ the

action-selection function outputs a random movement in any direction, other than a

direct backtrack to a previously occupied location (unless there are no other possible

moves). Otherwise, the function outputs an optimal step towards the current target

object. This function is as follows:

var af =function(s,m){
if(m.g ==‘search’){

var moves = states toActs(s)
return UniformDraw(moves)

}
else{

var optMoves = pathF inder(s,m.g)
return UniformDraw(optMoves)

}
}
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B2: Level 2

Data generation

The data for Level 2 problems involve multiple episodes of a single agent’s behavior.74

To quickly generate large data sets of episodes, we code, for each system, a

random initialState() function, which outputs a random initial state from the system

according to some parameters. For the gridWorld system, these parameters are: grid

dimensions (x- and y-), a list of objects that the grid may contain (random initialState

randomly selects at least 2 of the objects to include in random locations), and the

number of walls in the grid (also randomly placed). We can quickly generate a large data

set of trials for a particular actor model using the command

var data = repeat(numTrials,
function(){return gen trial(actor model, random initialState())})

Inference

Similar to Level 1 inference, we can perform Level 2 inference using a single functional

form with the following syntax:

actor inference = function(trials, theory, query, inferOpts)

74Note that the actor model functions, trial generation function, and pathFinder func-

tion are coded in a system-general way. This allows the observer to do Level 2 infer-

ence over episodes collected from multiple different systems (assuming the observer knows

states2Acts and transition for each system)
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where

• trials is an array t1, . . . , tn of trials involving a particular actor,

• theory is the observer’s framework theory, which encodes a prior distribution over

actor models,

• query specifies the requested information. This may include a full posterior

distribution over actor models, or a posterior distribution over a particular

component of an otherwise fixed actor model (e.g. one particular parameter or

constraint), and

• inferOpts specifies the method for the Infer operator. Because Level 2 inference

often involves continuous parameters, this will be either rejection or MCMC.

The observer’s framework theory T consists of a set of model structures (each

corresponding to a pair of program forms af and uf), a prior distribution

T.structurePrior over model structures, and a prior distribution

T.paramPrior[structure] over the parameter space for each structure. For certain

inference problems, T will only specify a single model structure, in which case

T.structurePrior is a Delta distribution concentrated on that structure.

The most straightforward program for performing Level 2 inference is as follows:
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var actor inference =function(trials, theory, query, inferOpts){
return Infer(inferOpts,function(){

//sample actor model from theory prior
var structure = sample(theory.structurePrior)
var params = sample(theory.paramPrior[structure])
var model = {af : structure.af, uf : structure.uf, params: params}
//core function to observe trial data
var observeTrial =function(trial){

//load trial data
var stateData = trial.states
var actData = trial.acts
//inner recursive loop to observe each step of trial
var iterate =function(s states,m states, acts){

if(s states.length == stateData.length){ return true}
else{

var current s = s states[s states.length− 1]
var current m = m states[m states.length− 1]
var next a = actData[acts.length]
var actDist = model.af(current s, current m,model.params)
//add likelihood of observing next act
Observe(actDist, next a)
var next s = stateData[s states.length]
var next m = sample(model.uf(current m, next s,model.params))
return iterate(s states.concat(next s),

m states.concat(next m),
acts.concat(next a))

}
}
return iterate([stateData[0]], [], [])

}
var addFactors = map(observeTrial, trials)
return getQueryInfo(model, query)

})
}

The first part of this program samples a model structure, then samples a parameter

vector for that structure. The observeTrial function iterates through each step of a
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single trial and adds the likelihood of observing those actions under the sampled actor

model. This requires sampling the actor’s mental state at each step. The

map(observeTrial, trials) command applies the observeTrial function to each trial in

the data set trials. The last line extracts and returns the requested information from

model. Thus, this program returns the posterior distribution P (query|trials, theory).

While this program is theoretically sound, it will often be intractable outside of

simple cases. The reason for this is that the MCMC method relies on rejection sampling

to construct an initial sample with non-zero posterior probability. In order to construct

an initial sample, the program must repeatedly execute every sample statement-

including the initial two statements to sample an actor model, and each

next m = sample(model.uf(current m, next s,model.params)) for each step of each

trial- until it generates a sample with non-zero posterior probability. If the data contain

a large number of trials, or there are a large number of possible alternative trials in each

system, this may require a very large number of samples to generate an initial

configuration with non-zero posterior probability. In order to make the program more

tractable, we can replace the sample statement with a MaP estimate of the actor’s

mental state, using the Level 1 inference function trial inference and a higher-order

Mode(dist) function, which returns the most likely value of a distribution dist. We then

weight that execution with the likelihood of the MaP mental state. While this is only an

approximation of the true posterior, the observer’s bias for deterministic explanations

means that this will generally be a reasonably accurate approximation. This significantly

reduces the number of sample statements that need to be executed.75 The code for this

more efficient program is as follows:

75from 2 + k ∗ n, where k ∗ n is the total number of steps across all trials in trials, to 2
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var actor inference =function(trials, theory, query, inferOpts){
return Infer(inferOpts,function(){

//sample actor model from theory prior
var structure = sample(theory.structurePrior)
var params = sample(theory.paramPrior[structure])
var model = {af : structure.af, uf : structure.uf, params: params}
//core function to observe trial data
var observeTrial =function(trial){

//load trial data
var stateData = trial.states
var actData = trial.acts
//inner recursive loop to observe each step of trial
var iterate =function(s states,m states, acts){

if(s states.length == stateData.length){ return true}
else{

var current s = s states[s states.length− 1]
var current m = m states[m states.length− 1]
var next a = actData[acts.length]
var actDist = model.af(current s, current m,model.params)
//add likelihood of observing next act
Observe(actDist, next a)
var next s = stateData[s states.length]
//compute MaP estimate of actor’s next mental state
var next m = Mode(trial inference(trial, [m state,m states.length],model))
//add likelihood of MaP mental state
var m dist = model.uf(next s, current m,model.params)
observe(m dist, next m)
return iterate(s states.concat(next s),

m states.concat(next m),
acts.concat(next a))

}
}
return iterate([stateData[0]], [], [])

}
var addFactors = map(observeTrial, trials)
return getQueryInfo(model, query)

})
}
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B3: Level 3

Data generation

The data for Level 3 inference problems involve multiple episodes of multiple actor’s

behavior. To generate multiple trial observations for a single actor, we can use the

procedure defined in the previous section. The method for generating a population of

actors depends on the scope of the problem we are trying to model. For our purposes, we

distinguish between two kinds of Level 3 data sets: single-population and

mixed-population. In a single-population problem, we define a single prior distribution

P (M) over actor models, sample n actor models M1, . . . ,Mn from this prior, and then

apply the Level 2 data generation procedure described in the previous section to each

actor model, to obtain a data set consisting of ki trials for each of the n actors. In a

mixed-population problem, we divide the n agents into m < n sub-populations, each

corresponding to a separate prior Pi(M) over actor models.

Inference

There are many forms that Level 3 inference can take, depending on the scope of the

problem we are trying to model and the depth of the observer’s background knowledge.

We distinguish between 4 classes of Level 3 inference problem: single-population

parameter inference, single-population full-model inference, mixed-population parameter

inference, and mixed-population full-model inference. All four classes of inference can be

performed using a single program form, but there are non-trivial differences between the

helper programs used for each kind of inference. We first present the general program

form, before explaining the differences.
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The general Level 3 inference program has the following syntax:

theory inference = function(data, overhyp, inferOpts)

where

• data = {D1, . . . , Dn} is an n× 1 array of actor-specific data sets, and each Di is an

ni × 1 array of trial observations for actor i.

• overhyp is the observer’s over-hypothesis, which encodes a prior distribution over

theories. The form of this over-hypothesis, and the helper function for sampling

theories, is the main difference between the four forms of Level 3 inference.

• inferOpts specifies the method for the Infer operator. Because of the scope of

Level 3 inference problems, this will almost always be an MCMC variant.

The general form for this program is as follows:
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var theory inference =function(data, overhyp, inferOpts){
return Infer(inferOpts, function(){

var theory = sampleTheory(overhyp)
var numActors = data.length
var actorModels = mapN(function(n){return sampleModel(theory)},

numActors)
var observeTrial =function(actorID, trial){

var model = actorModels[actorID]
var stateData = trial.states
var actData = trial.acts
var iterate =function(s states,m states, acts){

if(s states.length == stateData.length){ return true}
else{

var current s = s states[s states.length− 1]
var current m = m states[m states.length− 1]
var next a = actData[acts.length]
var actDist = model.af(current s, current m,model.params)
Observe(actDist, next a)
var next s = stateData[s states.length]
var next m = Mode(trial inference(trial, [m state,m states.length],model))
var m dist = model.uf(next s, current m,model.params)
observe(m dist, next m)
return iterate(s states.concat(next s),

m states.concat(next m),
acts.concat(next a))

}
}
return iterate([stateData[0]], [], [])

}
var addFactors = mapN(function(n){

return map(function(y){
return observeTrial(n, y)}, data[n])},

numActors)
return theory

})
}

The first stage of this program samples a theory from the over-hypothesis, then
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samples an actor model from this theory for each actor in the data. This utilizes the

sampleTheory and sampleModel helper functions, which differ depending on which of

the four classes of Level 3 inference we are performing (we explain each version in greater

detail below). The observeTrial function is very similar to the core function for Level 2

inference, except that it is applied to each trial for each actor. Also similar to the Level 2

program, we increase the tractability of this program by applying a MaP estimate of

each actor’s mental state for each step of each trial (rather than sampling the mental

states directly).

With this general form established, we will now explain the details of each form of

Level 3 inference.

Single-population parameter inference The easiest Level 3 problem is

single-population parameter inference, which corresponds to a case where the observer

believes that actors behave according to a particular model structure, and a framework

theory specifies the prior probability over the model’s parameters. In this case, the

over-hypothesis specifies:

• a single model structure M with parameters in θ,

• a family of prior distributions P (θ; γ) over θ parameterized by γ, so that each value

of γ specifies a framework theory, and

• a prior distribution P (γ) over γ.

The sampleTheory function draws a sample of γ from P (γ), and the sampleModel

function draws a sample of θ from the appropriate framework theory P (θ; γ), and plugs

this value of θ into the fixed model structure M .

247



Single-population full-model inference A single-population full-model inference

problem corresponds to a case where the observer believes that all actors behave

according to the same model structure, but does not know the structure. A framework

theory specifies a single model structure out of a set of possible alternatives, and a prior

distribution over the parameter space for that structure. In this case, the

over-hypothesis specifies:

• a (possibly infinite) set of model structures {Mi}, and a parameter space θi for

each model structure,

• a prior distribution P (M) over model structures,

• for each model structure Mi, a family of prior distribution P (θi; γi) over the

parameter space for that structure, parameterized by some γi, and

• a prior distribution Pi(γ) over each hyper-parameter γi

Within this class of inference problem, there are two methods to encode the set of model

structures and structure prior. Under the first method, the over-hypothesis specifies a

fixed and finite set of possible model structures M1, . . . ,Mk. In this case, the

sampleTheory function first generates a structure by sampling from a categorical

distribution over M1, . . . ,Mk, then samples a hyper-parameter from the appropriate

Pi(γ), which determines a prior distribution P (θi; γi) over the appropriate parameter

space. The sampleModel function then samples a parameter value from P (θi; γi), and

plugs this parameter value into the chosen model structure Mi.

Under the second method, the over-hypothesis specifies a probabilistic generative

grammar (PGG) over model structures. A PGG consists of
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• An initial “simplest” model structure M0

• A finite set of possible transformations T0, . . . , Tm, each of which takes a model

structure (and it’s corresponding parameter space) and outputs a transformed

model structure and parameter space.

• A function p : M→ Rm+1, which specifies, for a given model structure M , the

probability that each of the m+ 1 possible transformations will be applied.

For an over-hypothesis of this form, the sampleTheory executes the following recursive

procedure:

• Step 0: output the initial model M0

• Step 1: sample a transformation Ti with probability p(M0)i, then apply this

transformation to M0 to obtain M1

• Step n: sample a transformation Ti with probability P (Mn−1)i, then apply this

transformation to Mn−1. We designate a single “terminal” transformation T0,

which returns Mn−1 unchanged. If the terminal transformation is chosen, the

recursive procedure halts and returns Mn−1. Otherwise, we repeat this step using

Mn as the input. We require p(Mn)0 be greater than zero and non-decreasing in n,

which guarantees that sampleTheory will always halt after a finite number of steps

with probability 1.

• Final step: Once the terminal transformation is applied and outputs model

structure M (and its corresponding parameter space), sampleTheory samples a

value of the appropriate hyper-parameter γM to determine a prior distribution

P (θM ; γM)
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Once sampleTheory is executed and returns a model structure M and parameter prior

P (θM), the sampleModel function samples a value of θM from the parameter prior and

plugs it into the model structure M . While we do not present any simulations that use a

PGG over-hypothesis, we outline a simple PGG for actor models in appendix B4.

Mixed-population inference Both of the previous forms of Level 3 inference assume

that all actors can be explained by a single prior distribution over actor models. Under

the mixed-population versions of these problems, the observer assumes that actors may

belong to different sub-populations, and the framework theory specifies the number of

distinct sub-populations, and for each sub-population, a parameter prior (for

mixed-population parameter inference) or a model structure + parameter prior (for

mixed-population full-model inference). In this case, the over-hypothesis specifies:

• Either the number of sub-populations, and a prior distribution over

sub-populations (i.e. the prior probability that a new actor belongs to a particular

sub-population), or a prior distribution over the number of sub-populations. We

can use a non-parametric prior such as a Dirichlet Process (Rasmussen 2000) to

allow the observer to learn the number of sub-populations directly from data.

• An over-hypothesis for each sub-population, which specifies either a fixed structure

and parameter hyper-prior, or a structure prior and family of parameter

hyper-priors (depending on the type of Level 3 problem)

If the over-hypothesis specifies a fixed number of sub-populations, the sampleTheory

function samples a model structure and parameter prior for each sub-population. If the

over-hypothesis uses a non-parametric prior, the sampleTheory function first samples a
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number of sub-populations, then samples a model structure and parameter prior for each

sub-population. In both cases, the sampleModel function first assigns each actor to a

sub-population by sampling from the sub-population prior, then samples a model

structure from the appropriate structure prior, then samples a parameter value from the

appropriate parameter prior.

B4: Example of a PGG for actor models

Here we provide an example of a simple probabilistic generative grammar that allows us

to define a framework theory (prior distribution over actor models) over actor models of

arbitrary complexity. To keep this example simple, we shall assume that each model only

includes G-states, that each G-state is a VAL variable, and the domain of each VAL

variable is restricted to binary state-value functions (i.e. G(s) ∈ {0, 1} for each

system-state s). The base theory T0 consists of the default variables st, at, st+1, and a

single VAL variable G. The base program for at is given by The helper function

var actSelect =function(state,G, γ, θ){
var possibleActs = states toActs(state)
var stateV als = map(function(x){return expUtil(G, state, x, γ)}, possibleActs)
var actProbs = Transform(stateV als, θ)
return Categorical(vals: possibleActs, probs: actProbs)

}

expUtil(G, state, x, γ) computes the expected/possible/maximum76future utility of an

actor with goal G (a binary value function over states) and discount rate γ taking action

x from state state. The second function Transform converts a vector of utility values

(one corresponding to each possible move) into a normalized vector of action

76Depending on the form of the observer’s built-in utility computation function
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probabilities. For example, Transform may apply a softMax transformation with

concentration parameter θ, or it may linearly re-scale the values into probabilities and

then adjust those action probabilities by error parameter θ. The final line returns a

distribution over possible actions, with probabilities determined by the estimated utility

values.

The PGG starts with the initial theory above, and then applies a series of

transformations via stochastic recursion until a (probabilistic) termination criterion is

reached. Each non-terminal transformation involves the following steps:

• Choose a VAL variable G in the current theory Tt. The probability of choosing a

particular G is inversely dependent on the number of sub-goals currently under G,

i.e. variables with fewer current sub-goals are more likely to be chosen than

variables with more sub-goals, and variables with no current sub-goals are most

likely to be chosen.

• If G has no current sub-goals:

1. Create a new sub-goal variable G′ consisting of two binary VAL variables g1

and g2, conjoined through one of the following operators (chosen at random):

and, or, then. The two VAL variables, in conjunction with the binary

operator, define a new binary VAL variable: and(g1, g2) assigns 1 to any state

in which g1 and g2 are both satisfied; or(g1, g2) assigns 1 to any state in which

either g1 or g2 are satisfied; then(g1, g2) assigns 0 to every state until g1 is

satisfied, and then assigns 1 to any state in which g2 is satisfied.

2. If G had an arrow into a, replace that arrow with an arrow from G into G′,

and an arrow from G′ into a
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3. Modify the program for a so that any reference to the value of G is replaced

by a reference to the value of G′. I.e. if the program for a originally included

the line expUtil(G, state, x, γ), it is replaced with expUtil(G′, state, x, γ).

• If G already has a sub-goal G′:

1. Let G′ = p(g1, . . . , gn) denote the sub-goal expression corresponding to G′,

consisting of n component VAL variables conjoined by a sequence of binary

operators and, or, then.

2. Create a new binary VAL variable g, and compose it with p(g1, . . . , gn), with a

randomly chosen operator.

3. Modify the program for a so that any reference to the sub-goal G′ now points

to the new sub-goal expression

• If flip(P (Tt)), return to the first step with Tt+1, otherwise halt and return Tt+1.

P (Tt) is the halting probability, which increases with the complexity of Tt, so that

the process will eventually halt with probability 1.

This generative grammar, in conjunction with a set of transition probabilities (i.e.:

probability of choosing a particular G, probability of joining two new sub-goals via

and, or, or then, probability of a particular joining site and operator for adding a new g

to an existing sub-goal sequence, and halting probability), defines a prior distribution

over hierarchical goal models with an unbounded number of nested levels (though note

that any model with an infinite number of levels has probability 0 under this prior). We

can therefore use this PGG to learn an appropriately complex planning model for a

given actor.
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Appendix C: Simulation details for chapter 4

Here we present the simulation specifications for the case study presented in Chapter 4,

which replicates (in simulation) the infant habituation experiments in Woodward (1998).

C1: Derivation of schema space

We define our schema space as the set of all directed graphical models over the variables

X = (s0, a, s1, g, βa, βg, βs1) consistent with the following constraints:

1. Acyclicity.

2. No directed arrows into s0. This encodes the intuition that the initial state of the

environment is fixed prior to the start of the trial and cannot be influenced by any

feature of the trial itself.

3. Bias parameters βa, βg, and βs1 may only have arrows into their respective features

(which follows from their definition as bias parameters).

4. If any of a, s1, or g have no other parent in the structural model, they must have

the corresponding bias parameter as a parent. Technically, bias parameters should

be present for all features, even if they have another parent. However, these

parameters would only be relevant for comparing the behavior of one actor against

the behavior of another. As the current case study involves observation of only one

actor, we may omit the bias parameters for features with other parents.

5. The induced probability distribution P (s0, a, s1) must be consistent with the

transition distribution P (s1|s0, a). This parametric assumption encodes infants’
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knowledge of object physics and the physical principles of reaching (see Leslie

1984).

6. If a model includes the goal variable g, g must be sufficiently strongly correlated

with s1. This parametric constraint encodes the knowledge that goals track

outcomes (for infants who interpret the action in terms of a goal-driven agent).

Figure C.1.1 illustrates three models which fail to meet these criteria for different reasons

(and are therefore omitted from our simulations). Figure C.1.2 illustrates the 14 models

which do meet these criteria and constitute the basis for our simulations. We omit the

bias variables from these figures in order to save space.

s0 s1

a

s0 s1

ag

s0 s1

ag

a) b) c)

C.1.1: Three examples of structural models which are not consistent with our constraints.
Model a) violates constraint 2, as it contains an arrow from a into s0. Model b) violates
constraint 1, as it contains a cycle. Model c) violates the parametric constraint 5. In
particular, this model allows the probability of s1 to vary even when the values of s0 and
a are fixed, which violates the requirement that the joint distribution over (s0, a, s1) be
consistent with the transition distribution P (s1|a, s0).

C2: Simulation specifiations

All simulations were coded in WebPPL, a probabilistic programming language for

generative models (Goodman & Stuhlmuller 2018). For each model M , we compute the
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a

h11 

s0 s1

a
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s0 s1

a
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s0 s1

a
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s0 s1

a
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s0 s1

a
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a
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a

h24 

g

s0 s1

a

h25 

g

s0 s1

a

h26 

g

s0 s1

a

h27 

g

s0 s1

a

h28 

g

s0 s1

a

h29 

g

s0 s1

a

h210

g

H2:

C.1.2: The 14 structural models consistent with our list of constraints

posterior likelihood of the habituation event s, given the observer’s prior beliefs (i.e.

model M and prior distributions) and n observations of the habituation event; we denote

this likelihood P (s|Sn,M). We equate the increase in posterior likelihood with the

observer’s familiarization to the habituation stimulus. For these simulations, all

parameters are drawn from uniform priors. In general, computing the posterior

likelihood exactly may be intractable, so we approximate the posterior using a Markov

Chain Monte Carlo (MCMC) sampling method, which generates a set of 10000 samples

that approximates the true posterior. This step is solely to improve the tractability of

the simulations and does not reflect an assumption regarding the observer’s cognitive

processes. We perform these computations for n = 0, 1, ..., 20. In addition to the

habituation event likelihood, we compute, for each n, the posterior likelihood of each test

event t1 (“new-goal”) and t2 (“new-action”) under the distribution P (t|Sn,M). The

ratio of these likelihoods reflects whether the observer shows a preference for t1 or t2 (or
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neither). In particular, we assume that an observer who attends longer to test event t1

does so because t1 is significantly more unexpected than t2. Thus, we report that the

observer “prefers” t1 if and only if the posterior ratio P (t2|Sn,M)/P (t1|Sn,M) is

sufficiently larger than 1 (we use a threshold of 1.5 for our results table).

Simulated habituation and test curves

To better illustrate the outputs of each simulation, figure C.3.1 shows habituation and

test-event response curves for the action, reflex, and outcome models (h11, h
2
1, and h12 in

appendix C1).
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a) Habituation curves b) Test-event responses

C.3.1: simulated habituation and test-event response curves for action, reflex, and out-
come models. Panel a) illustrates the steady increase in posterior likelihood, corresponding
to the observer’s increasing familiarity with the habituation event. This occurs across all
models. Panel b) illustrates the posterior likelihood of both test events given n observa-
tions of the habituation event. If the observer starts with an action model, the posterior
likelihood of “new-action” drops significantly as habituation proceeds, while the posterior
likelihood of “new-goal” increases significantly. Thus, as n increases, an action-model ob-
server develops a strong preference for “new-action.” On the bottom of b), the response
graph illustrates that an outcome-observer would instead develop a strong preference for
“new-goal,” while the middle panel demonstrates that a reflex-observer would develop no
preference for either event (i.e both events are equally unexpected).
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