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Abstract

We investigate how humans infer the rich internal structure of
social collectives from patterns of interactions between agents.
We propose a computational model of this process which in-
tegrates a domain-general statistical learning mechanism with,
domain-specific knowledge about social contexts (i.e.: “intu-
itive sociologies”). We test our model in two experiments
where participants observe a sequence of animated interactions
between agents, and then assign the agents to groups accord-
ing to their role or type within the social collective. Crucially,
the two experiments depict different types of social interac-
tions which reflect different types of underlying social struc-
tures. The patterns of correspondence between model predic-
tions and human data support our account, and demonstrate
the importance of both general statistical learning and spe-
cific social knowledge when reasoning about social collectives.
Keywords: Social Inference; Intergroup Cognition; Computa-
tional Modeling

Introduction
Imagine you are starting a new job in a large building with
several floors of offices. At your first day of work, you notice
some regularities about the people around you. For example,
you notice some people wearing formal suits and working
in large offices, some wearing company uniforms and work-
ing in smaller cubicles, and others wearing more diverse, ca-
sual clothing and regularly moving between offices. From
these observations, you begin to build initial representations
of your new social environment centered around the notion
of a group. You might conclude, for example, that the of-
fice building houses several different companies, each with
its own group of employees.

Our tendency to categorize people into groups is a funda-
mental aspect of human social cognition. A wealth of re-
search has shown that this tendency begins to develop in early
infancy and plays a crucial role in social cognition throughout
childhood (Jin & Baillargeon, 2017); it occurs spontaneously,
even when groups are only indicated by arbitrary markers or
labels (Dunham, 2018); and it strongly influences our expec-
tations about the characteristics and behaviors of those around
us (Kawakami et al., 2021).

Despite their importance, simple group representations are
often insufficient for navigating social environments. While
it certainly can be important to categorize people according
to which company they work for, it is also important to rec-
ognize the rich internal structure of each group. For example,
certain people may have more authority to tell others what to

do (e.g.: managers), and others may have specialized exper-
tise (e.g.: IT support). Even if a manager and IT specialist
belong to the same group (i.e. work at the same company),
it may be inappropriate to interact with the manager and IT
support in the same way. Understanding this rich internal
structure of groups is critical for embedding ourselves into
all kinds of social environments, from large scale institutions
like governments and corporations to more transient organi-
zations like sports teams or classrooms.

In this paper, we develop a computational account of the
human capacity to infer the rich internal structure of social
collectives from patterns of interactions between agents. We
approach the problem as a form of latent structure inference:
given some observed data (in this case, interactions between
agents), what is the underlying social structure that best ex-
plains the data? Importantly, these latent structures can in-
volve many different structural forms and relations, such as
hierarchies, cliques, task groups, expertise groups, or combi-
nations of these types. In the office setting, for example, we
might group agents according to their relative positions in the
company hierarchy, and the agents over which they have au-
thority. With these groupings come certain expectations about
how the agents will interact with each other (e.g.: that lower-
level employees are more likely to fulfill orders from higher-
level managers). We might also notice that certain employees
regularly engage in friendly chit-chat or invite each other out
for drinks, which suggests a different kind of grouping into
social cliques, and carries its own set of expectations about
agent behavior.

We propose that humans achieve this flexible inference by
leveraging two different mechanisms. The first is a domain-
general statistical inference mechanism for extracting latent
structures from observable data patterns (Wood et al., 2012;
Mansinghka et al., 2012). Previous work has used similar
structure-learning algorithms to explain human judgments in
a variety of non-social categorization tasks (Austerweil &
Griffiths, 2008; Griffiths & Ghahramani, 2005), and has more
recently been applied to social domains as well (Gershman
et al., 2017; Gershman & Cikara, 2020). However, while
much of this work focuses on grouping objects or agents ac-
cording to perceived similarity, we focus on grouping agents
based on how they interact with each other, which is often a
stronger signal of latent internal structure than perceived sim-
ilarity (e.g.: it would likely be inappropriate to treat a CEO



and a summer intern identically, even if they share very sim-
ilar taste in music and movies). To this end, the second com-
ponent of our model is a set of domain-specific “intuitive so-
ciologies” (Mahalingam, 2007; Shutts & Kalish, 2021) that
capture our commonsense expectations about human social
behavior within different social contexts.

Now consider the problem of inferring the organizational
hierarchy and social cliques which reflect the operation of two
different intuitive sociologies. An observer fluent in them can
not only make inferences from known structure (e.g. who will
give orders to whom; who will invite whom for drinks) but
can also use observed interactions (e.g. who actually gives
orders to whom; who actually invites whom to drinks) to in-
fer the most plausible structures. Our goal is to model this
process of structure learning in both human subjects and a
computational model.

We evaluate our model with a novel experimental paradigm
in which subjects watch animated videos of agents interacting
with each other, then group the agents according to their role
or type within the depicted collective. Importantly, we design
stimuli to depict two different kinds of social interactions,
each of which reflects a different kind of underlying social
structure. This allows us to investigate the role and impor-
tance of the “intuitive sociology” component of our model,
and how human inferences change depending on the type of
interactions depicted.

Computational Framework

Our framework seeks to explain how humans infer the latent
structures underlying social collectives from patterns of inter-
actions between agents. At a high level, we model the prob-
lem as a process of inferring a latent structure S which best
explains a set of observed interactions D. In our model, D
consists of a set of pair-wise interactions d = (i, j,a), each
specifying the agent i who initiated the interaction, the recip-
ient j of the interaction, and the recipient’s answer a to agent
i.

While our framework is general enough to be applied to a
variety of social domains, as alluded to above we focus on
two domains that we test in our experiment: company hierar-
chies and friendship cliques. In these contexts, an interaction
represents a work demand or a social invitation (for hierar-
chies and friendships, respectively), and the response consists
of a binary “yes/no,” indicating whether j decides to fulfill i’s
demand or accept i’s invitation (depending on the interaction
type).

Given the observed data, our model infers the social struc-
ture according to Bayes’ rule: p(S|D) ∝ p(D|S)p(S). The
first term on the right-hand side P(D|S) is the likelihood of
the data given the true structure S, which is induced by the
observer’s intuitive sociology, and the second term P(S) is
a prior distribution over social structures. We explain the
derivations of these terms in greater detail below.

Formalizing intuitive sociology (P(D|S))
We represent an intuitive sociology as a set of social types
(i.e.: groups or roles that people can occupy) and a set of
norms or expectations about how people interact with one
another within and between types. Formally, we express
these expectations as probabilistic functions encoding the
likelihood of certain kinds of interactions occurring between
agents of particular types. This probabilistic function speci-
fies three key terms:

1. The probability Pinit(i|S) that agent i initiates an interac-
tion, given the social structure (and agent i’s role in that
structure). This probability is proportional to the number of
agents subordinate to agent i for work-demands, and pro-
portional to the number of agents in the same friendship
clique for social invitations (plus a noise term, ensuring a
non-zero probability that any agent might initiate an inter-
action).

2. The probability Prec( j|S, i) that agent j is the recipient of an
interaction, given the initiator. This is determined by two
parameters, βlow < βhigh. For work-demands, Prec( j|S, i) ∝

βhigh if j is subordinate to i and βlow otherwise. For social
invitations, Prec( j|S, i) ∝ βhigh if j is in the same friend-
ship clique as i and βlow otherwise. We place a uni-
form prior over βhigh ∈ (0,1) and a uniform prior over
βlow ∈ (0,βhigh/2) and integrate these parameters out of
our final computations.

3. The probability Pans(r|S, init = i,rec = j) of agent j’s re-
sponse r to agent i. Similar to above, we define a high
and low parameter γlow < γhigh, and set Pans(yes|S, init =
i,rec = j) ∝ γhigh or P(yes|S, init = i,rec = j) ∝ γlow de-
pending on whether i has authority over j (for work-
demands) or i and j are in the same clique (for social invi-
tations). We integrate these parameters out of the model in
the same fashion as βhigh and βlow.

Given these three terms, the likelihood term for each sociol-
ogy is equal to

P(D|S) = ∏
d=(i, j,a)∈D

Pinit(i|S)Prec( j|S, i)Pans(a|S, i, j) (1)

where the terms on the right-hand-side are computed as de-
scribed above for each sociology.

Prior over social structures (P(S))
The second component of our model is a prior distribution
P(S) over social structures. We define a social structure as a
2-tuple S = {C,E} where C : A → T is a mapping of agents
a∈ A onto social types t ∈ T , and E is a set of typed edges be-
tween clusters indicating inter-cluster relations (e.g.: E may
be an authority relation indicating which groups of agents
have authority over which other groups).

An important aspect of our framework is that it should be
able to learn novel social structures that it has never encoun-
tered before. To achieve the requisite flexibility, we use an



infinite mixture model (Rasmussen et al., 1999) to define a
prior distribution over structures of arbitrary complexity. To
this end, we use a Chinese Restaurant Process (CRP) prior,
which defines a probability distribution over cluster assign-
ments P(C) with an unbounded number of possible clusters,
allowing the model to infer the appropriate number of clus-
ters directly from the data. We then define a prior distribu-
tion P(E|C) over edges given clusters by sampling a biased
coin-flip for each cluster pair, to determine whether an edge
exists between those clusters (the edge bias parameter is then
integrated out with a Beta(2,1) prior). This yields a prior dis-
tribution P(S) = P(C)P(E|C) over social structures with an
unbounded number of potential clusters.

Inference
The main application of our model is to infer a social structure
S = {C,E} from data D depicting a sequence of interactions
among a fixed set of agents. At a computational level, this
requires computing the posterior distribution P(S|D) accord-
ing to Bayes’ rule as described above. In practice, this dis-
tribution is intractable to compute exactly, as it ranges over
an infinite set of potential structures. We therefore approx-
imate this distribution using a Metropolis-Hastings Markov
Chain Monte Carlo (MCMC) algorithm with Gaussian pro-
posal distributions, taking 30,000 samples and retaining ev-
ery 6th sample, for a final approximation consisting of 5,000
samples. From these samples, we compute the average adja-
cency matrix M̄ = {mi, j}, where mi, j indicates the proportion
of samples in which agents i and j occupy the same cluster.

Experiments
We conducted two studies, depicting two different types of
social interaction between agents: the “friendship” trials
(Study 1a, trials F1-F5) depicted agents inviting other agents
to socialize after work, while the “authority” trials (Study 1b,
trials A1-A5) depicted agents giving work-related commands
to other agents.

Participants
For each study, we recruited 40 adult participants with US-
based IP addresses via Amazon Mechanical Turk. 2 par-
ticipants were excluded from Study 1a after failing one
or more comprehension checks, leaving N=38 participants
(mean age=38.9, SD=11.4); 6 participants were excluded
from Study 1b, leaving N=34 (mean age=38.5, SD=11.4).

Stimuli
Each study comprised 5 trials. In each trial, participants were
shown an animated video depicting a sequence of 7 interac-
tions between 5 agents who work in the same office. Each
interaction contained three parts: first, the initiator of the in-
teraction is shown moving from their starting position to the
intended recipient. Then, a speech bubble appears next to the
initiator depicting one of two symbols, corresponding to the
two interaction types (a martini glass with a question mark for

social invitations, or an envelope in a mailbox with an excla-
mation mark for work-related orders). Finally, the recipient
of the interaction responded with a speech bubble depicting
a “thumbs-up” and green check-mark (indicating “yes”) or a
“thumbs-down” and red X (indicating “no”). See figure 1 for
examples of animated interactions.

Figure 1: Example of interactions as presented in the stimuli.
Panel a) depicts Orange giving an invitation to Red, who then
accepts the invitation. Panel b) depicts Red giving a work-
related order to Green, who then refuses to do the order.

To generate the animated videos, we first chose, for each
trial, a “ground-truth” social structure of the appropriate type,
each containing between 2 and 4 distinct clusters of agents.
For each structure, we then sampled a sequence of 7 interac-
tions between agents using the associated generative model.
Because of the relatively small number of interactions de-
picted, a particularly noisy data set may lead to uninforma-
tive inferences (for both the model and participants). To se-
lect for informative data sets, we re-sampled each sequence
until one was generated that met the following criteria: 1) it
must include at least one “rejected” interaction, 2) it cannot
depict the same interaction (between the same two agents)
more than twice, and 3) when applied to the sequence, the
inference model must infer a clustering that is at most one re-
assignment away from ground truth (i.e. at most one agent as-
signed to an incorrect cluster). After sampling an acceptable
interaction sequence for each trial, we converted the sequence
into a short animation (approximately 30 seconds each) using
an application coded in Processing.

Procedure
Participants in each study were first shown a series of instruc-
tions explaining how to interpret the animations and interac-
tions. In Study 1a, participants were told that people in the
office will sometimes invite each other out after work, and
that people may accept or reject these invitations. In Study
1b, participants were told that there were several different
roles people could occupy in the company, including upper
managers, middle managers, and low-level employees. Par-
ticipants were further told that managers were more likely to
give orders and less likely to agree to orders, while lower-
level employees were more likely to receive orders and more



Less likely in 
same cluster

More likely in 
same cluster

Trial r 95% CI r 95% CI
F1 -0.34 (-.79, .37) 0.99 (.98, .99)
F2 -0.08 (-.68, .57) 0.94 (.76, .99)
F3 -0.14 (-.71, .54) 0.97 (.87, .99)
F4 -0.61 (-.99, .04) 0.99 (.98, .99)
F5 -0.35 (-.80, .35) 0.96 (.74, .98)
A1 0.81 (.38, .95) -0.43 (-.84, .25)
A2 0.84 (.45, .96) -0.45 (-.84, .24)
A3 0.55 (-.12, .88) -0.30 (-.78, .40)
A4 0.73 (.19, .93) -0.19 (-.73, .49)
A5 0.96 (.84, .99) -0.42 (-.83, .28)
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Figure 2: Summary of study results. Panels a) and b) show a comparison of participant adjacency matrices against inference
model and the ground truth. Rows correspond to trials. Leftmost column shows the ground-truth structure used to generate
stimulus data for each trial. Second column shows binary adjacency matrices corresponding to the ground-truth structure. Third
and fourth columns show average adjacency matrices inferred by the computational model using the “Authority Sociology”(A)
and “Friendship Sociology” (F) modules, respectively. Fifth column shows average adjacency matrix induced by participant
responses. Panel c) shows a legend for interpreting adjacency matrices: each cell depicts the probability that the two corre-
sponding agents share a cluster. Darker colors indicate higher probabilities. Panel d) shows Pearson correlations and 95%
confidence intervals between participant responses and model predictions generated with with sociology module A (first two
columns) and F (Second two columns). Positive model correlations are highlighted in green



likely to agree to fulfill the orders they receive. After the ini-
tial instructions, participants were given two chances to pass
a 4-question comprehension check ensuring that they were
able to correctly interpret the stimuli. Participants who failed
at least one question on both attempts were excluded from the
study.

Participants who passed the comprehension check were
then shown all five trials for the study in a random order.
In each trial of each study, participants first watched the 30
second animation, and were then asked which agents were
friends with each other (for Study 1a) or which agents had
the same role at the company (for Study 1b). Participants re-
sponded by dragging and dropping 5 icons, corresponding to
the 5 agents, into at most 5 different groups on the computer
screen.

Results
As pre-registered1, we first computed, for each participant
in each trial, the 5× 5 binary adjacency matrix induced by
the participant’s grouping. We then averaged these matrices
across participants, yielding, for each trial, a 5×5 real-valued
matrix whose i, jth entry equals the fraction of participants
who placed agents i and j in the same cluster for that trial.
To compare against model predictions, we applied the infer-
ence model to the same data set of interactions used for each
trial two times, once with each sociology module. For each
application, we generated 5,000 samples from the posterior
distribution P(S|D) using a Metropolis-Hastings algorithm,
and computed the average adjacency matrix induced by these
samples.

To compare model predictions against human data, we iso-
lated the 10 independent, non-trivial parameters of the ad-
jacency matrices2 and computed, for each trial, the Pearson
correlation between the average matrix induced by the human
data and the average matrix outputted by the model. Correla-
tions for all 10 trials across both studies are shown in Figure
2d.

As an additional means of visualizing the data, we gener-
ated four color-coded adjacency matrices for each trial, cor-
responding to the ground truth structure, the average struc-
ture inferred using the Authority sociology and the Friendship
sociology, and the average structure induced by human data
(Figures 2a-2c). This qualitative visualization is an impor-
tant supplement to the quantitative measures of fit, as small
qualitative changes to inferred structure (e.g.: moving a sin-
gle agent from one cluster to another) can result substantial
drops in the correlation between adjacency matrices.

Our results support both a) that participants inferred the un-
derlying social structures in a manner that tracks with model

1osf.io/d25pz
2Since an adjacency matrix is symmetric about its diagonal, we

use only the top half of each matrix for our correlation computa-
tions. Furthermore, the diagonal will always consist of all 1’s, since
each agent is always in the same cluster as itself. This leaves the
10 independent, non-trivial parameters above the diagonal of each
matrix

predictions and b) that participants are sensitive to the type of
interaction being depicted in a way that reflects the two “in-
tuitive sociologies” coded in our model. For the Friendship
trials (F1-F5), participant judgments were strongly and sig-
nificantly correlated with model predictions generated using
the Friendship sociology, and negatively correlated or uncor-
related with predictions generated using the Authority soci-
ology. Results from the Authority trials were more varied in
degree of fit but showed the same overall pattern: participant
judgments were strongly correlated with the Authority pre-
dictions in all but one trial, and were negatively correlated
with the Friendship predictions in all five trials.

The wider range in degrees of fit for the Authority trials is
expected to some degree, as “authority” is, in several ways,
an inherently more complex social dynamic than friendship.
First, friendship is generally a symmetrical relation, while au-
thority is generally anti-symmetrical: if A is friends with B, it
usually follows that B is friends with A, but if A has author-
ity over B, it usually follows that B does not have authority
over A. Similarly, it is often easier to generalize friendship
across agents than authority: for example, if A is friends with
B and C, then it is more likely that B and C are friends as well.
However, if A has authority over both B and C, it may also be
the case that B has authority over C, or C has authority over
B, or neither has authority over the other, none of which are
directly supported by A’s authority over B and C. Thus, given
the relative sparsity and noisiness of the stimuli, it is unsur-
prising that participant responses were overall more consis-
tent in the Friendship trials than the Authority trials. That
said, the qualitative comparison in figures 2a & 2b suggests
that much of the discrepancy between participant responses
and model predictions (in the Authority trials) is degree of
confidence: that is, for most of the authority trials, average
participant responses yielded qualitatively similar adjacency
matrices to the corresponding model inference, but differed
in the degree of certainty in each pair-wise adjacency.

Discussion

The tendency to assign people to social categories and groups
is a fundamental aspect of human social cognition, and exerts
a major influence on our behavior towards and expectations
of those around us (Dunham, 2018; Jin & Baillargeon, 2017;
Kawakami et al., 2021). Much existing research on this sub-
ject focuses on simple group representations (e.g.: ingroup
versus outgroup), effectively treating each group as an un-
structured container of individuals. However, there are many
contexts in which these simple group representations are in-
sufficient for navigating social environments. When a child
joins a team sport during recess, for example, it is often not
sufficient to simply recognize which children are on which
team: the child must also recognize the different roles or po-
sitions that exist within the team, and how these roles or posi-
tions influence the behavior and expectations of the children
occupying them. Understanding this rich internal structure is
often critically important for embedding ourselves into social



collectives.

In this project, we proposed and tested a computational ac-
count of the human capacity to infer this internal social struc-
ture. Our account leverages two core mechanisms: a domain-
general mechanism for extracting latent structures from ob-
servable data (Wood et al., 2012; Mansinghka et al., 2012),
and a set of domain-specific expectations about the behavior
of agents in different social contexts, i.e.: an intuitive sociol-
ogy (Mahalingam, 2007; Shutts & Kalish, 2021). Our exper-
iments provide converging support for our computational ac-
count. Across both experiments, the average latent structures
inferred by participants tracked with model predictions in
terms of the number of distinct clusters, as well as the assign-
ment of agents to clusters. This supports our hypothesis that
humans leverage something like a statistical latent-structure
learning mechanism for reasoning about the internal struc-
ture of social collectives. Furthermore, by comparing par-
ticipant responses against model predictions generated using
both of our sociology modules, we demonstrated that partici-
pants draw on different sets of expectations depending on the
type of interactions being depicted, and that these expecta-
tions are similar to the two sociologies coded in our model. In
particular, participants generally expected social invitations
to reflect a symmetrical relationship between agents (i.e.: if
A invites B, then A is friends with B and B is therefore also
friends with A), but expected work-related commands to re-
flect an asymmetrical relationship (i.e.: if A gives an order to
B, then A has authority over B but B does not have authority
over A). Thus, our model demonstrates how the abstract so-
cial dynamics encoded by an intuitive sociology can be con-
cretely implemented in a group of agents, and how we can
leverage our expectations about these dynamics to infer the
underlying social structure.

While our initial results are promising, they also contain
important nuances that necessitate further investigation. In
general, participant responses showed much greater variabil-
ity, and larger discrepancies with model predictions, in the
Authority trials than in the Friendship trials. To some de-
gree this increased variability was expected, as authority is
an anti-symmetric relation and in several ways more complex
than friendship. Another possible source of these discrep-
ancies lie in how participants and the model each interpret
conflicting signals in the data. For example, if A gives an
order to B, that signals that A has authority over B, but if B
refuses to fulfill A’s order, that signals that A lacks authority
over B. Thus, an interaction in which B refuses an order from
A has two potential and mutually exclusive explanations: ei-
ther A lacked the authority to order B in the first place, or B
refused an order that they should, in fact, have fulfilled. In
our model, the probability of each interpretation is controlled
by a separate parameter, and while these parameters are inde-
pendent from each other, they are both drawn from the same
prior distribution. It is therefore possible that human partic-
ipants consistently interpreted one signal more strongly than
the other. For example, if participants believe that refusing

an order from someone with authority over you is much less
likely than giving an order to someone over whom you have
no authority, the average responses would be systematically
biased in a way that reflects this asymmetry. Thus, further
investigation is required to determine whether the discrepan-
cies in the Authority trials are due to a similar asymmetry in
human expectations about authority.

A further limitation of the current work is that the experi-
mental stimuli depict only one type of interaction at a time,
but in real-world social environments, we often observe mul-
tiple kinds of interactions, reflecting multiple types of under-
lying relations and structures. For example, one may have
several bosses at work but also be friends with one of their
bosses outside of work. This may lead to more nuanced pat-
terns of interactions: one may interact differently with a boss
who is also a personal friend than with a boss who is not
a personal friend, and may also interact differently with a
friend who is a boss than a friend who has the same role at
the company. Our model can be extended to do inference over
data depicting multiple types of interaction, and to simultane-
ously infer multiple underlying social structures reflected in
the different interactions (e.g.: simultaneously inferring who
is friends with each other and who has authority over each
other).

Finally, there are many ways in which people can signal
their affiliation with each other without directly interacting
with each other. One fairly well-studied example of this are
social choices, which are choices that directly affect someone
other than just the chooser. For example, if there is a limited
supply of resources (e.g.: snacks in the break room), then
my choice to take some of those resources directly affects
the options available to anyone else with access to the same
resources. Previous work has leveraged situations like these
to show that people make strong inferences about affiliations
between individuals (e.g.: how much A cares about B) based
on the social choices of one individual (e.g.: which snacks A
takes for themself, and which ones they leave for B) (Davis
et al., 2021; Jern et al., 2017; Van Doesum et al., 2013). This
suggests a potentially fruitful extension to our model, by en-
abling it to infer affiliations between agents based on both
direct interaction and indirect actions like social choices, and
extrapolate the broader social structure from both sources of
information.

To conclude, we proposed a computational account of the
human ability to infer the latent structure underlying hu-
man social collectives from observed patterns of interactions
between agents within the collective. Our account lever-
ages both domain-general statistical learning mechanisms
and domain-specific expectations about social dynamics. We
demonstrated that people infer these latent social structures in
a fashion that reflects both a general statistical inference pro-
cess and context-specific expectations about social behavior.
This constitutes an important step towards a unified compu-
tational account of inter- and intra-group cognition.
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