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ABSTRACT
Most infant cognitive studies use visual fixation time as the 
measure of interest. There are, however, some serious meth-
odological and theoretical concerns regarding what these 
studies reveal about infant cognition and how their results 
ought to be interpreted. We propose a Bayesian modeling 
framework which helps address these concerns. This frame-
work allows us to more precisely formulate hypotheses about 
infants’ cognitive representations, formalize “linking hypoth-
eses” that relate infants’ visual fixation behavior with stimulus 
complexity, and better determine what questions a given 
experiment can and cannot answer.
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1. Introduction

1.1. Studying infant cognition

Infant cognitive studies are always challenging, as there are relatively few 
ways to collect relevant data. Infants cannot tell us what they are thinking, 
and, for practical reasons, standard neuroimaging techniques are difficult 
to apply (Raschle et al., 2012). Thus, we are usually forced to rely on 
behavioral data alone. For this reason, the vast majority of infant cognitive 
studies use visual fixation time (i.e., the length of time that an infant 
visually attends to a stimulus) as the measure of interest. This leverages 
one of the few behaviors that infants of all ages regularly engage in: staring 
at things.

Interpreting visual fixation1 data requires a linking hypothesis (Aslin, 
2007; Teller, 1984), which relates fixation time to an underlying cognitive 
process. Most visual habituation paradigms rely on a linking hypothesis that 
relates an infant’s fixation time to the novelty, complexity, or unexpected-
ness of the stimulus. The origins of this assumption are often attributed to 
a series of studies performed by Fantz (1961, 1964), which demonstrate that 
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infants gradually shift their attention away from familiar stimuli and toward 
novel stimuli. Habituation refers to a steady decrease in fixation time as 
a stimulus is repeated, thereby becoming more familiar.

Visual habituation experiments have been used extensively to investigate 
how infants represent and understand the world. This includes object 
physics (e.g., Baillargeon, 1986; Leslie, 1984; Spelke et al., 1994), causation 
(e.g., Cohen & Oakes, 1993; Leslie & Keeble, 1987; Muentener & Carey, 
2010; Oakes & Cohen, 1990), intentional behavior (e.g., Brandone & 
Wellman, 2009; Csibra & Gergely, 1998; Gergely et al., 1995; Phillips & 
Wellman, 2005; Woodward, 1998), and other agents’ beliefs (e.g., Brooks & 
Meltzoff, 2002; Onishi & Baillargeon, 2005; Surian et al., 2007). Indeed, 
without the development of visual habituation experiments, we would know 
very little about infant cognition whatsoever.

There are, however, some concerns regarding what these experiments 
reveal and how their results ought to be interpreted. First, the conclusions 
drawn in a visual habituation experiment depend critically on the linking 
hypothesis, and it is crucial to precisely define and thoroughly test the 
linking hypothesis itself. To this end, several authors have called for an 
increased focus on modeling the habituation process itself (Aslin & Fiser, 
2005; Colombo & Mitchell, 2009). Other authors have expressed more 
theoretical concerns about how hypotheses ought to be formulated and 
validated (Aslin, 2007; Oakes, 2010), and more practical concerns about 
the proper criteria for establishing habituation (Dannemiller, 1984; Thomas 
& Gilmore, 2004).

More generally, any study that asks what a subject knows or how a subject 
represents a stimulus faces a kind of underdetermination that can be 
difficult or even impossible to resolve. In particular, there are often multiple 
distinct accounts which result in identical behavior under the same experi-
mental assumptions. To illustrate this, suppose that two young siblings, Ivan 
and Amos, go to an ice cream shop, and each one gets a cone. After leaving 
the shop, Ivan drops his cone and begins to cry. Now consider the following 
two descriptions of what transpires next:

(1) Amos sees that his brother is crying because he dropped his cone. He 
doesn’t like it when his brother cries, so he gives Ivan his own cone, 
hoping that this will help Ivan to stop crying.

(2) Amos sees that his brother feels sad because he dropped his cone. He 
doesn’t like it when his brother is sad, so he gives Ivan his own cone, 
hoping that this will help Ivan to feel better.

Both cases describe the same stimulus and response from an outside obser-
ver’s perspective:
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Ivan drops his cone and begins to cry, and then Amos gives Ivan his own 
cone. The reasoning underlying Amos’ response in each scenario is very 
different, however. The first explanation is strictly behavioral: Amos reasons 
that Ivan’s behavior (crying) is a direct reaction to a change in his environ-
ment (dropping his cone). The second explanation is mentalistic: Amos 
reasons that Ivan’s behavior is a reaction to a hidden mental state (sadness) 
which is caused by dropping his cone. If Amos is sufficiently verbal, we 
might try to distinguish these two accounts by asking him to explain his 
reasoning; however, that is not an option when the subject is a preverbal 
infant. Thus, in order to avoid projecting on the infant a richer mental 
picture than is warranted by the data, it is important to precisely specify 
cognitive hypotheses and their corresponding behavioral predictions.

1.2. Contributions and overview

The main contribution of this paper is a computational modeling frame-
work that allows us to do the following:

(1) Precisely specify hypotheses about how an infant represents 
a stimulus.

(2) Generate behavioral predictions from each hypothesis via a simulated 
version of habituation.

(3) Relate the design of a stimulus to the questions it could answer in 
a habituation experiment.

In Section 2, we start by reviewing visual habituation experiments in more 
detail, and identify the theoretical and methodological challenges which our 
framework addresses. We focus on the lack of formalizations of hypotheses 
about infants’ cognitive representations, as well as the lack of formalizations of 
the linking assumptions through which experimental results are interpreted. In 
Section 3.1, we provide a conceptual overview of our framework and explain 
how it helps address these issues. Our framework takes a rationalist approach 
to cognitive modeling, and we illustrate a Bayesian implementation in Section 
3.2. In Section 4, we validate our framework by replicating a seminal study on 
infants’ understanding of intentional actions (Woodward, 1998). We demon-
strate how our framework allows us to formalize the qualitative question posed 
in this study, how it enables a more precise interpretation of its results, and 
what further insights this interpretation suggests.
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2. Background

2.1. Looking times and habituation experiments

The seminal demonstration of infant habituation is often attributed to 
a series of studies carried out by Robert Fantz in the early 1960s (1961, 
1964). In the 1964 study, each infant was shown a sequence of stimuli paired 
side-by-side. In each trial, the stimulus on one side was held fixed, while the 
stimulus on the other side was novel. As the trials progressed, infants 
gradually shifted their visual attention away from the fixed stimulus and 
toward the novel one. Habituation refers to this progressive decrease in an 
infant’s fixation time as a stimulus becomes more familiar.

A standard habituation experiment involves an initial habituation phase 
and a subsequent test or dishabituation phase. In the habituation phase, the 
infant is repeatedly shown the same stimulus over multiple trials. The experi-
menter records the infant’s fixation time – that is, the duration for which the 
infant attends to the stimulus before looking away. As the stimulus is 
repeated, fixation time progressively decreases until a termination criterion 
is met. Typically, this occurs after a fixed number of trials, or once the fixation 
time reaches a sufficiently low threshold. It is critical to properly define and 
calibrate the termination criterion: if different infants habituate at different 
rates, they may be at very different stages of processing once the test phase 
begins. Infants who have not fully habituated may show fixation preferences 
which violate the linking hypothesis, such as preferring familiar stimuli over 
novel ones, and this can complicate our interpretation of the results (for an 
overview of termination criteria and associated methodological challenges, 
see Colombo & Mitchell, 2009).

In the test phase, the infant is shown two or more stimuli. Typically, the 
habituation stimulus depicts one or more salient features, and the test 
stimuli each differ with respect to one of these features. Dishabituation 
refers to a sharp increase in fixation time as the infant encounters a novel 
stimulus. If the infant dishabituates at a significantly higher rate with 
stimulus A than with stimulus B, this is interpreted as meaning that stimulus 
A appears more novel, unexpected, or complex to the infant, relative to the 
expectations formed during habituation. Using this reasoning, we can 
design experimental stimuli to determine which features are most integral 
in an infant’s representation of a stimulus.

To better illustrate this, we briefly summarize a seminal habituation study 
of infants’ understanding of goal-directed actions (Woodward, 1998). In 
this study, the habituation stimulus consisted of a stage with two platforms, 
each holding a visually distinct toy (see Figure 1). An actor stood to one side 
of the stage, so that only his or her arm was visible. In each habituation trial, 
the actor reached for and grasped one of the toys, targeting the same toy 
each time.
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In the test phase, the toys were switched, and the infant was shown two 
test events. In the 'new goal”' event, the actor performed the same physical 
reaching motion as in the habituation stimulus, thereby grasping the oppo-
site toy. In the ‘new action’ event, the actor reached for the opposite plat-
form, thereby grasping the same toy as in the habituation stimulus. The 
underlying reasoning is that the stimulus depicts two salient features: action 
(the spatiotemporal profile of the actor’s arm), and outcome (the toy which 
is grasped). If the infant encoded the habituation stimulus in terms of the

action feature, then, it was concluded, the test event which varies the 
action (‘new action’) appeared more novel to the infant, resulting in 
a higher rate of dishabituation. Conversely, if the infant encoded the 
habituation stimulus in terms of the outcome, then the ‘new goal’ test 
event appeared more novel. In this study, as well as in a subsequent panel 
of replications and control studies, 8- and 9-month-old infants consis-
tently dishabituated to ‘new goal’ at higher rates, leading to the conclusion 
that outcomes are more salient than physical actions in infants’ represen-
tations of reaching events.

The Woodward (1998) experiments illustrate nicely the core principles of 
habituation studies. Similar methods have been used extensively to explore 
how infants represent different aspects of the world, such as object physics 
(e.g., Baillargeon, 1986; Leslie, 1984; Spelke et al., 1994; Spelke et al., 1995), 
causation (e.g., Cohen & Oakes, 1993; Leslie & Keeble, 1987; Muentener & 
Carey, 2010; Oakes & Cohen, 1990), intentions (e.g., Brandone & Wellman, 
2009; Csibra & Gergely, 1998; Gergely et al., 1995; Phillips & Wellman, 2005; 
Woodward, 1998), and beliefs (e.g., Brooks & Meltzoff, 2002; Onishi & 

Figure 1. The four stimulus forms used in Woodward (1998). Each stimulus depicts an actor 
reaching for and grasping one of two visually distinct toys. Depending on the position of the toy 
relative to the actor (near or far), this results in one of two visually distinct reaching motions 
(long-reach or short-reach).
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Baillargeon, 2005; Surian et al., 2007). However, some have expressed 
concerns about the design and interpretation of habituation experiments, 
calling for an increased focus on modeling the habituation process itself 
(Aslin, 2007; Aslin & Fiser, 2005; Colombo & Mitchell, 2009; Oakes, 2010; 
Thomas & Gilmore, 2004).

2.2. Theoretical models of habituation

Fixation data can only be interpreted through the lens of a linking hypothesis, 
which specifies the underlying cognitive or neurological processes driving 
visual habituation. There are multiple theoretical accounts of habituation, but 
most share the common view that fixation time reflects some combination of 
stimulus-driven attention, memory of previously encountered stimuli, and 
comparison between past and present stimuli (Kidd et al., 2012).

One of the most widely cited explanations for infant habituation is the 
Sokolov comparator model (Sokolov, 1963). This model is based on obser-
vations of an orienting reflex (OR): a response to nonthreatening, novel 
stimuli of moderate intensity (Colombo & Mitchell, 2009), which progres-
sively decreases in magnitude as the stimulus is repeated. Sokolov theorized 
that as an organism repeatedly encounters a stimulus, the organism forms 
an internal representation or “cognitive schema” of that stimulus. Under 
this theory, the magnitude of the OR response – which, in the context of 
infant studies, is the infant’s fixation time – is inversely proportional to the 
degree of similarity between the observed stimulus and the internal repre-
sentation. Dual-process accounts of habituation (Groves & Thompson, 
1970; Thompson & Spencer, 1966) add a separate “sensitization” process, 
which induces a transient spike in response strength at the onset of a new 
stimulus. More recent studies have revealed other factors which predict 
infant visual fixation and gaze shifts. These include saliency models (e.g., 
Mahdi et al., 2017), which predict fixation points by estimating the degree to 
which a stimulus component “stands out” from its background; contrast 
entropy models (e.g., Mahdi et al., 2015), which predict gaze shifts by 
estimating the visual information content of different fixation points; and 
saccadic models (e.g., Le Meur et al., 2017), which predict entire scan-paths 
or sequences of gaze-shifts.

While these studies explore how infants allocate their visual attention to 
different images or scenes, visual habituation experiments tend to involve 
a small set of repeated stimuli with similar visual features. Due to its 
explanatory power, relative conceptual simplicity, and plausible physiologi-
cal underpinnings (Bernstein, 1979, 1981), the comparator theory (or com-
parator + sensitization) has remained the dominant account of infant visual 
habituation. Without formal models of certain aspects, however, these 
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theories provide only rough conceptual guidelines for designing habituation 
experiments, and they leave many critical questions unanswered.

2.3. Challenges and computational models

Here we review some often-raised concerns about infant habituation stu-
dies. These include practical concerns about experimental design and phy-
siological concerns about the neural substrates underlying habituation. 
Several authors have proposed computational models to address these 
issues; however, our concerns relate more specifically to infants’ “cognitive 
schema” and what we can infer about this schema from an infant’s fixation 
behavior. Several authors have identified key challenges in making such 
inferences about infants’ cognitive representations (e.g., Aslin, 2007; Oakes, 
2010). We argue that the current literature lacks the computational models 
necessary to address these challenges.

The first concern is how an infant’s intrinsic expectations – acquired 
through everyday experience prior to the experiment – affect the infant’s 
performance in an experimental setting. The purpose of the habituation 
phase is to induce a novel expectation or to eliminate a prior expectation by 
repeatedly showing a “biasing stimulus.” However, infants’ intrinsic expec-
tations can still “seep through” to the post-habituation phase, making it 
difficult to determine whether fixation times solely reflect the expectations 
formed during habituation (e.g., Quinn et al., 2002). It is therefore impor-
tant to determine what preexisting expectations might influence an infant’s 
performance and assess those expectations before interpreting experimental 
results.

Another concern is what we can conclude about internal representations 
when the stimuli differ with respect to inferred features as well as observable 
features. Learning about cognition from fixation behavior is much more 
straightforward when the only salient dimensions are easily perceptible (e.g., 
color or shape). In many experiments, however, some stimuli differ in terms 
of an inferred feature, which has an observable effect but is not directly 
observable itself. A clear example is the Woodward (1998) experiment, 
wherein one of the test stimuli differed from the habituation stimulus in 
terms of the actor’s goal. Infants consistently dishabituated more strongly to 
the ‘new goal’ event: this clearly shows that infants can detect the relevant 
physical features, but it does not directly show whether the infant represents 
those physical differences in the same way that an adult would – namely, as 
observable consequences of the actor’s goal state. It is therefore critical to 
precisely specify the hypotheses that is being tested in order to avoid 
drawing stronger conclusions – that is, projecting on an infant a richer 
mental representation – than warranted by the data.
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As we cannot directly observe an infant’s cognitive representations and 
infants cannot tell us about their cognitive representations, addressing these 
challenges requires a computational framework that allows us to (a) for-
mulate precise hypotheses about infants’ cognitive representations and the 
background knowledge constraining these representations, and (b) connect 
hypotheses to behavioral predictions in an experimental setting. Because we 
cannot “observe” how an infant represents a stimulus, we must rely on 
principled counterfactual claims regarding how an infant would behave if 
they did represent a stimulus in a certain way, which we can then compare 
against observed behavior.

The current literature on formal models of habituation is largely char-
acterized by two approaches, neither of which is well-suited for these tasks. 
The regression analysis approach (e.g., Ashmead & Davis, 1996; 
Dannemiller, 1984; Thomas & Gilmore, 2004) is generally used to perform 
robustness checks on certain experimental practices, such as calibrating 
termination criteria. These models abstract from the underlying representa-
tions and estimate fixation time as a direct function of trial-time. The other 
approach uses connectionist and dynamic systems models to investigate the 
neurological substrates underlying habituation (e.g., Elman et al., 1998; 
Sirois & Mareschal, 2002, 2004). These models directly represent the low- 
level neurological mechanisms involved in habituation and are similarly 
unsuited for answering questions at the level of cognitive representations. 
Thus, there is a clear gap in the relevant literature at the cognitive level, 
where our questions of interest reside.

3. Formal framework

Our framework needs to serve three main functions:

(1) Provide a way to formalize claims about how an infant represents 
a stimulus.

(2) Provide a way to connect these claims with predictions about fixation 
behavior.

(3) Provide a way to model the process through which these representa-
tions are acquired during habituation.

To this end, we adopt a rationalist approach to cognitive modeling; we 
treat the infant as an observer with some background expectations, carrying 
out (approximately) rational inferences in response to observed evidence. 
This is an increasingly common approach in cognitive science and psychol-
ogy, most often realized with the machinery of Bayesian inference (e.g., 
Griffiths et al., 2008), though there are many ways to implement a rationalist 
framework.2 We first present the core concepts of our framework at an 
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abstract level before presenting a Bayesian realization of these concepts in 
greater detail.

3.1. Conceptual overview

3.1.1. Schema space
A schema space specifies the set of “cognitive schema” which we the 
experimenters consider to be plausible candidates for how the subject 
represents a stimulus3. We may think of each schema as an “intuitive 
theory” through which the subject interprets a class of stimuli. This “intui-
tive theory,” in conjunction with the subject’s inference mechanism, deter-
mines the internal representations that are acquired during habituation. At 
this stage, we are intentionally vague about the nature of these representa-
tions. Representations may be pictorial, with structural and spatial proper-
ties analogous to the stimuli they represent (e.g., Kosslyn & Pomerantz, 
1977); they may be discursive, characterized as logical propositions in 
a language of thought (e.g., Pylyshyn, 1981); or they may be hybrid con-
structions involving both analogue and logical elements (e.g., Tye, 1984). 
Their content may be causal (e.g., Dretske, 1981), functional (e.g., Block, 
1987), or probabilistic (e.g., Chater et al., 2006). All that we require at this 
level of abstraction is an agreed-upon notion of representation.

Given our experimental stimuli and representation system, we can 
further constrain the schema space by appealing to what the subject is likely 
to already know. If, for example, our representations are causal graphical 
models, and we expect the subjects to understand the forward direction of 
time, we may omit any representation in which past features are causally 
dependent on present features. We may also derive constraints from other 
levels of analysis (e.g., behavioral, physiological, etc.), though we focus on 
constraints derived from expectations regarding the subject’s background 
knowledge.

The final step is to interpret a qualitative claim or question as a subset of 
these representations. The details of this identification depend on our 
formalization; in general, we interpret a qualitative claim about the subject’s 
knowledge as a set of defining properties over representations, and then we 
identify the claim with the subset of representations which satisfy those 
properties. We illustrate this process using probabilistic generative models 
in Section 3.2.

3.1.2. Linking hypothesis
The next component is a formalization of the linking hypothesis: that is, our 
assumptions connecting data (i.e., fixation behavior) to hypothesis (i.e., 
cognitive schema). Recall that nearly every account of habituation involves 
some notion of stimulus novelty, complexity, or unexpectedness. Intuitively, 
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the more complex or unexpected a stimulus appears to the infant, relative to 
the expectations formed during habituation, the longer we expect the infant 
to fixate on that stimulus. However, few habituation studies employ precise 
measures of stimulus complexity, relying instead on rough, qualitative 
assessments.

A linking hypothesis takes the form of an input–output map. Inputs are 
pairs of (a) a cognitive schema and (b) one or more test stimuli. The outputs 
are predictions about fixation behavior. There are several ways to formalize 
this, each with different applications. A quantitative linking hypothesis 
outputs a numerical prediction of the infant’s fixation time on a test stimu-
lus. We can compute this using a formal notion of complexity (e.g., infor-
mation content or a measure of logical coherence) or expectedness (e.g., 
posterior likelihood) of the stimulus. We can then generate a numerical 
prediction of fixation time as a function of this complexity measure. The 
exact details of this computation depend on (a) how we formalize the 
hypothesis space, and (b) the exact linking hypothesis we are formalizing.4 

The core principles remain the same, however: we compute an objective 
measure of stimulus complexity, given an inferred schema, and we use this 
measure to predict the infant’s fixation time.

A more qualitative approach is to compute the ratio of complexities, 
using a complexity measure of choice, to predict which test stimulus the 
infant will fixate on for longer. If stimulus s1 is significantly more complex 
than s2, we can predict that the infant will fixate on s1 for longer, without 
us having to explicitly predict the fixation time itself. This method is 
generally easier to apply, as it requires significantly less numerical 
calibration.

3.1.3. Habituation
Following our rationalist assumptions, we model habituation as the subject’s 
process of inferring a representation of the habituation stimulus, given their 
background knowledge and inference mechanism. How we characterize this 
search space depends on our formal representation system and our assump-
tions about the subject’s background knowledge. At a high level, each 
schema determines the space of individual representations that the subject 
may acquire during habituation. Given the subject’s search space and 
inference mechanism, we model habituation as an approximately rational 
search for a representation which “best” accounts for the habituation sti-
mulus. The representation that results from this inference reflects the 
expectations that the subject acquires during habituation. We then apply 
our functionalized linking hypothesis to the test stimuli and inferred repre-
sentations in order to generate predictions about the subject’s test-phase 
fixation behavior. By comparing these predictions against observed fixation 
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behavior, we can invert this reasoning to make inferences about the infant’s 
cognitive representations from experimental data.

3.2. Bayesian implementation

To illustrate our framework in greater detail, we provide a Bayesian realiza-
tion of these concepts and demonstrate how this realization serves the core 
functions outlined in Section 3.1. We choose the Bayesian approach par-
tially because of its growing popularity in cognitive science, but also because 
its formal machinery is particularly well-suited for the tasks we have 
outlined.

3.2.1. Overview
The basic claim underlying the Bayesian approach to cognition is that 
much of our cognitive behavior can be interpreted as approximately 
rational probabilistic inference. At its core is an observer model: we treat 
our subject as a rational observer with some prior knowledge or expecta-
tions and ask how that observer would optimally respond to a stimulus. 
We can then invert this analysis to ask what prior knowledge, representa-
tions, or expectations lead to behavior consistent with what we observe in 
our subject.

An observer model consists of two components. The first is the obser-
ver’s hypothesis space: this is the set of possible representations that the 
observer may consider for a class of stimuli. At an abstract level, each 
representation is a probability distribution over possible observations and 
enables probabilistic inference over the relevant domain. If, for example, 
the stimuli consist of two features s = (f1, f2), then a representation in this 
domain is just a joint probability distribution over pairs P(f1, f2). Using 
this representation, the observer can compute the likelihood of 
a particular observation and predict the value of one feature by observing 
the other.

The second component is a prior distribution over representations. This 
reflects the observer’s prior degree of belief in each representation in the 
absence of evidence. When presented with some evidence E, the observer 
updates the degree to which they believe each representation according to 
Bayes’ theorem: 

P tjEð Þ ¼ P Ejtð ÞP tð Þ=P Eð Þ

Here, P(t|E) denotes a rational Bayesian observer’s posterior degree of belief 
in representation t, given evidence E and prior beliefs P(t). The denominator 
P(E) is a normalizing term; in many cases, as in ours, we can ignore this 
term, as we are only interested in a ratio of posteriors, and the normalizing 
terms cancel out.
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In recent years, Bayesian cognitive scientists have developed observer 
models to account for a wide variety of cognitive functions, including object 
perception (Kersten & Yuille, 2003), prediction of object trajectories (Weiss 
& Adelson, 1998), visual feature inference (Griffiths & Austerweil, 2009), 
and belief–desire inference (C. Baker et al., 2011; C. L. Baker et al., 2009). 
While these models are often technical and complex, they are all grounded 
in these basic components: a hypothesis space of probability distributions, 
a prior distribution over hypotheses, and learning and inference using 
Bayes’ Theorem.

3.2.2. Formalizing the hypothesis space
Most often, a Bayesian observer’s hypothesis space is defined using 
a generative model. A probabilistic generative model consists of a structural 
model and a parameter vector, which jointly define a probability distribution 
over stimulus values. The structural model consists of a variable set and 
a dependency relation among those variables which is typically but not 
necessarily causal. The variable set may include any observable features of 
the stimulus as well as latent features posited by the observer. The dependency 
relation determines an efficient way to parameterize the joint probability 
distribution induced by the model. If we let X = (x1, x2, . . ., xn) denote the 
model’s variable set and par(x) denote the set of variables in X on which x is 
directly dependent, then the joint distribution P(X) factors as follows:5 

P Xð Þ ¼ P x1jpar x1ð Þð Þ � P x2jpar x2ð Þð Þ � . . . � P xnjpar xnð Þð Þ

Each term P(x|par(x)) corresponds to a vector of parameters, and the set of 
all such terms constitutes the parameter space for the generative model. We 
can think of the structural model as the observer’s “intuitive theory” for 
a domain, and each parameterization as a representation of a single stimulus 
in that domain.

To better illustrate such a hypothesis space, recall the stimulus forms used 
in the Woodward (1998) experiments (Figure 1). We can represent the 
salient features of these stimuli with three variables s = (e0, a, e1):

(1) e0 denotes the initial state of the stimulus, that is, the positions of the 
toys, the position of the actor’s arm and hand, and so on.

(2) a denotes the action, that is, the physical motion profile of the actor’s 
arm.

(3) e1 denotes the outcome, which encodes the same information as e0 
after the action is performed.

A structural model in this domain contains the variables (e0, a, e1), as well as 
any latent variables posited by the observer. For the purpose of this illustra-
tion, we restrict the latent variables to at most one hidden feature g and one 
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bias parameter for each feature. The bias parameters encode the actor’s 
preferences or attitudes corresponding to each feature, for example, the 
default likelihood of the actor choosing “long-reach” or “short-reach.”

The hidden feature g corresponds to a goal and allows us to distinguish 
mentalistic theories of agent-actions from purely behavioral theories. 
Intuitively, a model without this feature explains the action in terms of 
contingencies between observable inputs (environment) and observable 
outputs (behavior), while a model with this feature explains the action in 
terms of a goal-driven agent.

Figure 2 illustrates four examples of structural models for the Woodward 
(1998) stimuli in this domain. Each corresponds to an “intuitive theory” of 
reaching actions; each allowable parameterization of a model corresponds to 
one particular representation that the observer may consider for a single 
instance of reaching. We can therefore define our schema space as the set of 
structural models over this variable set which are consistent with any 
constraints derived from the subject’s presumed background knowledge.

With a formalized schema space, we can more precisely characterize the 
sort of qualitative claims about infants’ representations that are tested in 
habituation experiments. The Woodward (1998) experiments, for example, 
explore whether infants encode reaching events in terms of the actor’s arm- 
motion or the target object. We can interpret each of these possibilities in 
terms of a schema’s structural model. In particular, if a model includes one 
or more trainable parameters corresponding to the action feature and no 

Figure 2. Examples of structural models for the Woodward (1998) stimuli. (a) Under this model, 
the actor has a bias for certain arm motions, and the outcome results from the actor’s chosen 
motion. (b) Under this model, the action is a direct response to the initial configuration of the 
environment. (c) This denotes a “teleological” model (Csibra & Gergely, 1998), under which the 
actor has a bias for achieving a certain outcome and selects the action that achieves that 
outcome. (d) This is a “goal-model,” which is similar to c but includes a latent goal feature 
distinct from the outcome.
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trainable parameters corresponding to the goal or outcome feature (e.g., 
Figure 2(a,b)), then the infant would have to attend primarily to the arm- 
motion in order to be able to infer the appropriate representation. We can 
therefore identify these as the “motion-encoded” models. Similarly, if the 
structural model includes a trainable parameter corresponding to the goal or 
outcome (e.g., Figure 2(c,d)), then the infant would have to attend to these 
features in order to infer a representation. We can therefore identify these as 
the “outcome-encoded” models. We illustrate this identification more 
exhaustively in Section 4.

3.2.3. Observer models and fixation times
The common assumption underlying most habituation experiments is that 
an infant will fixate longer on the stimulus that is more complex or unex-
pected, given the expectations acquired during habituation. A formalized 
linking hypothesis therefore requires a precise measure of complexity or 
unexpectedness. The Bayesian framework provides a natural analogue to 
these notions in the likelihood function.

The likelihood term P(s|t) denotes the probability of observing stimulus 
s given representation t. If this is very low, then an instance of s would be 
highly unexpected for an observer with representation t. We can leverage 
this interpretation of posterior likelihood to formalize both qualitative and 
quantitative linking hypotheses. If P(s1|t)/P(s2|t) is significantly lower than 
1, we predict that an observer with representation t will fixate on test 
stimulus s1 for significantly longer than s2, and vice versa if P(s1|t)/P(s2|t) 
is significantly larger than 1. Kemp and Xu (2009) use a similar approach to 
connect a generative model of object trajectories with fixation predictions in 
object-perception experiments.

A more quantitative approach is to compute an objective measure of 
stimulus-complexity using posterior likelihood. Kidd et al. (2012) use this 
approach to test a particular linking hypothesis. They define a generative 
model of their experimental stimuli and equate the complexity of a stimulus 
with its surprisal logP(s|t) under the generative model. Surprisal is often 
used in statistics and information theory as a proxy for information content, 
and with a given model, it quantifies the memory cost of encoding 
a stimulus for an ideal observer. We can therefore use the surprisal of 
a stimulus under a given representation as a basis for quantitative predic-
tions about an infant’s fixation time.

Note that this points to two different ways one can use this reasoning to 
test hypotheses about habituation. The first is to apply a fixed linking 
hypothesis to a set of generative models, to determine which models induce 
predictions consistent with observed behavior. This is useful for testing 
hypotheses about how infants represent stimuli. The second is to assume 
a fixed generative model of a class of stimuli and generate looking-time 
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predictions under multiple complexity-dependent linking hypotheses, 
which is applicable for testing the linking hypothesis itself. For our present 
purposes, we focus on the first application.

3.2.4. Modeling habituation
In the Bayesian framework, the observer’s habituation-phase inference 
process is realized as posterior inference using Bayes’ theorem. Given 
a habituation stimulus s, let Sn denote a sequence of n stimuli identical to 
s. A rational Bayesian observer interprets this evidence using Bayes’ theo-
rem, updating their posterior degree of belief P(t|Sn) in each representation. 
As n increases, we can identify the increasing familiarity of the habituation 
stimulus with the increasing posterior likelihood P(s|Sn) under the subject’s 
inferred distribution. This is obtained by integrating P(s|t) over all values of 
t (i.e., all representations compatible with the observer’s schema), weighted 
by P(t|Sn).

If necessary, we can formulate explicit habituation criteria in terms of the 
posterior likelihood. If our criterion is reached after the n-th habituation 
trial, then we simulate the observer’s test-phase performance by computing 
the likelihood of each test stimulus under the posterior distribution P(t|Sn). 
This formalizes the notion that an infant interprets the test stimuli with 
respect to the representation inferred during habituation. By computing the 
likelihoods of the two test stimuli under this representation, we can apply 
our linking hypothesis to predict how the observer will allocate her visual 
attention.

Alternatively, we can abstract away from methodological concerns 
regarding habituation criteria by simulating the observer’s performance in 
the test phase after each habituation trial. Unlike a real-world habituation 
experiment, we do not have to wait for the observer to reach a pre-defined 
threshold before applying this computation. We can therefore obtain simu-
lated curves plotting the degree to which each test stimulus would be 
unexpected for an observer habituated to n habituation stimuli, for any 
value of n6. This allows us to generate simulated habituation curves as well 
as simulated plots of the observer’s test-phase performance after each 
habituation trial. We show examples of simulated habituation and test- 
response curves in Appendix C.

3.3. Interpreting the Bayesian framework

Rationalist approaches have become increasingly common in cognitive 
science, most frequently using the formal machinery of Bayesian infer-
ence. There are, however, different perspectives regarding the proper 
application and interpretation of such models (for a more thorough 
review of these perspectives, see Chater et al., 2006; Griffiths et al., 2008; 
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Jones & Love, 2011; Lee, 2011). To understand these perspectives, it is 
important to understand the “three levels of analysis” typically identi-
fied in cognitive modeling (Marr, 1982). At the computational level, we 
characterize the abstract problem solved by some cognitive function, as 
well as the information involved in this problem. At the algorithmic 
level, we characterize the process through which a cognitive agent might 
solve that problem, including the representations involved and how 
those representations are manipulated. At the implementation level, we 
identify how these processes might be implemented in physiological 
substrates. Of course, these levels are not completely independent; 
knowledge at lower levels of analysis can provide constraints on 
hypotheses at higher levels.

Many rationalists in cognitive science restrict their interpretation to 
the computational level of analysis; they present a model as a useful way 
to characterize the cognitive problems being solved, rather than as 
a literal claim about the processes through which they are solved. 
Other papers adopt a more realist perspective, treating the model as 
a hypothesis about the cognitive representations involved in such pro-
cesses. Our perspective in developing this framework is similar in spirit 
to the latter, though somewhat different in application. Much of the 
work in explaining human cognition with generative models focuses on 
“existence demonstrations”; that is, demonstrations of a certain genera-
tive model which, when appropriately parameterized, approximately 
replicates human performance in some cognitive task (e.g., categorizing 
novel objects, learning novel words, etc.). Our framework is similar in 
that we interpret the model as a candidate hypothesis about how infants 
represent stimuli. However, rather than focusing on individual plausible 
models, we characterize a broader space of possible models, and we 
interpret qualitative claims regarding infant cognition as being subsets 
of these models. This, we argue, provides a more precise way of 
specifying qualitative hypotheses about infant cognition, and it can 
assist us both in answering questions stemming from data and identify-
ing tractable questions to ask.

Our interpretation of rationalist assumptions in this paper is similar 
to the use of utility functions in economics. In particular, economists 
are interested in the preferences people have and how they act on those 
preferences to make economic decisions. We cannot directly observe 
a preference, nor can we directly observe the cognitive processes under-
lying decision making, so any attempt to study this subject requires 
some assumptions regarding what an agent’s behavior reveals about 
their preferences. The overwhelmingly common approach is to model 
economic decision-makers as rational agents optimizing a personal 
utility function. This assumption is flexible enough to capture nearly 
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any pattern of behavior, and it provides economists with a unified 
language for formulating hypotheses and generating predictions. We 
view the role of rationalist assumptions in cognitive science similarly: 
we are interested in infant cognitive representations and how they act 
on their representations, but we cannot observe these processes 
directly. We therefore assume that an infant’s behavior reflects an 
approximately rational inference process about a representation of 
a relevant stimulus. This provides a unified language for formulating 
cognitive hypotheses and connecting those hypotheses to behavioral 
predictions.

4. Case study and simulations

In this section, we illustrate our framework by replicating the Woodward 
(1998) experiments. Note that the main purpose of this initial demonstra-
tion is to validate our framework against existing data and a qualitative 
interpretation of that data. We discuss other potential applications of the 
framework more extensively in the next section.

4.1. Setting up the simulations

The first step is constructing our schema space, which we briefly outlined in 
Section 3.2. This construction has three parts: first, we identify the poten-
tially salient features of our experimental stimuli. We shall use the repre-
sentation described in Section 3.2, which consists of three observable 
features, one hidden feature g, and one bias parameter β for each feature 
(as explained in Section 3.2.2). Second, we identify constraints on schemas 
based on what we can reasonably assume about the observer’s background 
knowledge. Finally, we define our schema space as the set of all structural 
models consistent with these constraints. This construction leaves us with 
14 possible structural models (see Appendix A for a full specification and 
explanation of constraints and models). These correspond to the 14 “sche-
mas” that we consider to be plausible candidates for the infant’s “intuitive 
theory” of reaching. Our replication will therefore involve 14 sets of simula-
tions, one for each candidate schema.

The next step is to define our question of interest as a subset of this 
schema space. For this replication, our question of interest is the follow-
ing: do infants encode reaching events in terms of arm-motion or out-
come? To formalize this, we must identify subsets H1 and H2, which 
correspond to these two possibilities. This identification can be defined 
in terms of a model’s dependency relation: an H1 or “motion-encoded” 
model contains at least one of e0 → a or βa → a and cannot contain either 
e1 → a or g → a. That is, actions may directly depend on external 
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circumstances and/or the actor’s internal biases, but not on outcomes or 
goals. An H2 or “outcome-encoded” model contains at least one of the 
arrows e1 → a or g → a, meaning that actions directly depend on out-
comes or goals.

To model habituation, we simulate an observer with schema T inferring 
a representation t of repeated stimulus s via Bayesian posterior inference. 
Each schema consists of one of the 14 structural models and its correspond-
ing parameter space, and each schema corresponds to a row in our results 
table. For each simulation, we plot the observer’s “habituation” rate by 
plotting, for each trial, the posterior likelihood of the next stimulus accord-
ing to the observer’s posterior distribution.

For the test phase, we apply a qualitative linking hypothesis: given the 
observer’s posterior distribution P(t|Sn) after the n-th habituation trial, we 
predict that the observer will fixate on test stimulus s1 longer than s2 if and 
only if the posterior likelihood of s1 is significantly lower than that of s2, that 
is, if P(s1 |Sn) P(s2 |Sn)). This connects a hypothesis about the observer’s 
schema with a prediction about the observer’s relative fixation times during 
testing. Note that if our goal were to replicate quantitative predictions or 
trends, we would need to perform a more rigorous parametric analysis and 
comparison against existing results. However, given the qualitative nature of 
the predictions we seek to replicate – that is, preference for one stimulus 
over another – little analysis is needed to perform the current validation of 
our framework. Additionally, we can abstract away from methodological 
concerns about termination criteria by simulating the test phase after each 
habituation trial, rather than waiting until a termination criterion is 
reached. We plot the observer’s predicted test-phase performance after 
each of a large but fixed number of habituation trials (see Appendix B for 
simulation specifications and Appendix C for examples of habituation and 
test curves).

Table 1. Simulation results.
Model Hypothesis Preference

h1
1 H1 New action

h1
2 H1 None

h1
3 H1 None

h1
4 H1 None

h2
1 H2 New goal

h2
2 H2 None

h2
3 H2 None

h2
4 H2 New goal

h2
5 H2 None

h2
6 H2 New goal

h2
7 H2 New goal

h2
8 H2 New goal

h2
9 H2 None

h2
10 H2 None
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4.2. Results and analysis

Table 1 shows the compiled results from our 14 simulations. A ‘new goal’ 
preference indicates that the posterior likelihood of ‘new action’ reaches at 
least 50% higher than the posterior likelihood of ‘new goal’, and vice versa 
for ‘new action’. While we do not use explicitly coded termination criteria 
(as we can simulate test results after any number of habituation trials), the 
posterior likelihood consistently reached a 150% threshold of initial like-
lihood after 6–9 trials across all simulations. These results show only one 
model (h1

1) which prefers ‘new action’, while five models prefer ‘new goal’. 
Based on this table, we see that every model which develops a preference for 
the ‘new goal’ event belongs to H2. This validates the experimenter’s 
assumption that an observer who attends longer to the ‘new goal’ test 
event encodes the habituation event in terms of its outcome. Similarly, the 
only model which results in a preference for the ‘new action’ event belongs 
to H1.

Beyond this validation, these simulations help address some of the con-
cerns raised in Section 2.3. First, we noted the difficulty of drawing conclu-
sions when experimental stimuli differ along inferred features such as a goal. 
Fixation data can reveal which stimuli appear more unexpected to the 
infant, but this does not directly tell us how the infant represents the 
stimulus. Replicating an experiment in this framework helps us determine 
what distinctions we can and cannot infer among candidate representations 
from a given stimulus design.

In this case, we can rule out an H1 (motion-encoded) model for any 
infant who attends significantly longer to ‘new goal’. However, among the 
models which develop a preference for ‘new goal’, one model (h2

1) does not 
involve a latent ‘goal’ feature. Instead, this model identifies the physical 
outcome that follows the action as the main determinant of the action itself. 
This reflects a teleological model of actions (Csibra & Gergely, 1998), 
according to which the physical outcome explains or justifies (and tempo-
rally follows) the actor’s movement. This is distinguished from a causal- 
mentalistic model, according to which a latent goal feature causes (and 
temporally precedes) the actor’s movement. The results of these simulations 
demonstrate that the Woodward (1998) stimuli cannot be used to distin-
guish between these two possibilities. In order to make this distinction, one 
would need stimuli in which the actor’s goal differs in some way from the 
physical outcome that follows (for example, see Brandone & Wellman, 
2009). Thus, replicating the experiment in this framework helps us clarify 
the questions that a given stimulus can be used to answer, as well as the kind 
of stimuli needed to answer a given question.

A second challenge is distinguishing the expectations an infant acquires 
during habituation from the infant’s intrinsic expectations. This 
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framework helps us separate these two kinds of expectations. To this end, 
note that our simulations were performed with uniform prior distribu-
tions over all parameters. Intuitively, this encodes an assumption that the 
observer has no prior expectations regarding the actor’s biases. These 
results reflect solely the expectations acquired by the observer during 
habituation, and therefore, they illustrate the baseline expectations that 
an observer would form in the absence of any prior expectations. However, 
we can further determine the influence that an observer’s prior beliefs 
would have by simply changing the prior distributions for each parameter. 
We can therefore use our framework to generate predictions of the form 
“an observer with model M and prior expectations P should prefer stimu-
lus x over y after habituation to z.’’ By holding M fixed and varying P, we 
can predict the observer’s post-habituation preferences for different prior 
expectations. Vice versa, we can infer properties of the observer’s prior 
expectations by holding some hypothesized M fixed and observing 
a subject’s post-habituation preferences.

This basic example illustrates some of the main applications of our 
framework. By replicating habituation experiments in simulations like 
these, we can validate the reasoning underlying an experiment – more 
precisely, we can relate the design of a stimulus to the questions it can 
help answer, and we can better distinguish a subject’s prior expectations 
from those acquired during habituation.

5. Conclusions and future work

Because there are so few ways to obtain data relevant to infant cogni-
tion, most of our knowledge comes from fixation-time experiments. 
There are, however, some serious concerns regarding their proper 
design and interpretation. As we have argued, there is a gap in the 
relevant literature at the cognitive level: there are regression-analysis 
models for assessing practical questions of experimental design, and 
connectionist models for exploring the neurological substrates under-
lying habituation. However, in order understand how an infant repre-
sents a stimulus and know what kind of inferences we can make about 
this representation from habituation experiments, we need an explicit 
model of the representations in question.

We believe that our framework helps fill this gap by serving three 
main functions. First, it helps us more precisely formulate hypotheses 
about infants’ cognitive representations, allowing us to interpret quali-
tative questions as sets of generative models. Second, it allows us to 
formalize linking hypotheses that depend on stimulus complexity or 
unexpectedness and thereby connect hypotheses to behavioral predic-
tions. Finally, we can integrate these components to replicate and 
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analyze fixation experiments via a simulated version of habituation. As 
we saw in our case study, this helps us determine what questions an 
experiment can answer, what inferences are justified from a particular 
body of data, and what prior expectations or knowledge may influence 
an infant’s performance in the test-phase.

There are several different applications of this framework to be 
explored in future work. While the case-study in Section 4 applies the 
framework retroactively to existing data, we can also use the framework 
more constructively: that is, by formalizing a space of representations 
for given stimuli, and a linking hypothesis connecting each representa-
tion to a behavioral prediction, we can determine which representations 
can and cannot be distinguished through behavioral data before an 
experiment is performed. We can then invert this reasoning to design 
stimuli that will be most useful for answering a given question about 
infants’ cognitive representations. In future work, we will explore the 
constructive potential of our framework for assisting with the design of 
experimental stimuli.

Additionally, while this paper focuses on evaluating hypotheses about 
infants’ representations under fixed experimental assumptions, we can also 
use the framework to test the experimental assumptions themselves. We 
can, for example, fix a single observer model of a stimulus and generate 
behavioral predictions under multiple linking hypotheses. By comparing 
these predictions against human infants’ responses to the same stimuli, we 
can assess which linking hypothesis best fits experimental data (similar to 
the approach in Kidd et al., 2012). Finally, we can perform robustness 
checks against variations in subjects’ intrinsic expectations by simulating 
a population of infants with a distribution of different prior expectations 
and comparing habituation performance at individual and aggregate levels. 
This is similar in application to the regression analysis framework outlined 
by Thomas and Gilmore (2004). Thus, we believe our proposed framework 
can help to address many of the methodological and theoretical challenges 
inherent to studying infant cognition.
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Appendix A

Derivation of schema space
We define our schema space as the set of all directed graphical models over the variables X 

= (e0, a, e1, g, βa, βg, βe1) consistent with the following constraints:

(1) Acyclicity.
(2) No directed arrows into e0. This encodes the intuition that the initial state of the 

environment is fixed prior to the start of the trial and cannot be influenced by any 
feature of the trial itself.

(3) Bias parameters βa, βg, and βe1 may only have arrows into their respective features, 
which follows from their definition as bias parameters.                                              

(4) If any of a, e1, or g have no other parent in the structural model, they must have the 
corresponding bias parameter as a parent. Technically, bias parameters should be 
present for all features, even if they have another parent. However, these parameters 
would only be relevant for comparing the behavior of one actor against the behavior of 
another. As our current study involves observation of only one actor, we may omit the 
bias parameters for features with other parents.

(5) The induced probability distribution P(e0, a, e1) must be consistent with the transition 
distribution P(e1|e0, a). This parametric assumption encodes infants’ knowledge of 
object physics and the physical principles of reaching (see Leslie, 1984).

(6) If a model includes the goal variable g, then g must be sufficiently strongly correlated 
with e1. This parametric constraint encodes the knowledge that goals track outcomes 
(for infants who interpret the action in terms of a goal-driven agent).

Figure A1 illustrates three models which fail to meet these criteria for different reasons 
and are therefore omitted from our simulations. Figure A2 illustrates the 14 models which 
do meet these criteria and constitute the basis for our simulations. We omit the bias 
variables from these figures in order to save space.

PHILOSOPHICAL PSYCHOLOGY 25

https://doi.org/10.1016/0042-6989(84)90178-0
https://doi.org/10.1016/0042-6989(84)90178-0
https://doi.org/10.1037/1082-989X.9.1.70
https://doi.org/10.1037/h0022681
https://doi.org/10.1037/h0022681
https://doi.org/10.2307/2026175


Appendix B

Simulation specifications
All simulations were coded in WebPPL, a probabilistic programming language for 

generative models (Goodman & Stuhlmuller, 2018). For each model M, we compute the 
posterior likelihood of the habituation event s, given the observer’s prior beliefs (i.e., model 
M and prior distributions) and n observations of the habituation event. We denote this 
likelihood as P(s|Sn, M). We equate the increase in posterior likelihood with the observer’s 
familiarization to the habituation stimulus. For these simulations, all parameters are drawn 
from uniform priors.

In general, computing the posterior likelihood exactly may be intractable, so we 
approximate the posterior using a Markov Chain Monte Carlo (MCMC) sampling 
method, which generates a set of 10,000 samples that approximates the true posterior. 
This step is solely to improve the tractability of the simulations and does not reflect an 
assumption regarding the observer’s cognitive processes. We perform these computa-
tions for n = 0, 1, . . ., 20. In addition to the habituation event likelihood, we compute, 

Figure A1. Three examples of structural models which are not consistent with our constraints. 
3a) violates constraint #2, as it contains an arrow from a into e0. 3b) violates constraint #1, as it 
contains a cycle. 3 c) violates the parametric constraint #5. In particular, this model allows the 
probability of e1 to vary even when the values of e0 and a are fixed, which violates the 
requirement that the joint distribution over (e0, a, e1) be consistent with the transition 
distribution P(e1|a, e0).

Figure A2. The 14 structural models consistent with our list of constraints.
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for each n, the posterior likelihood of each test event s1 (‘new goal’) and s2 (‘new 
action’) under the distribution P(s|Sn, M). The ratio of these likelihoods reflects 
whether the observer shows a preference for s1, s2, or neither. In particular, we assume 
that an observer who attends longer to test event s1 does so because s1 is significantly 
more unexpected than s2. Thus, we report that the observer “prefers” s1 if and only if 
the posterior ratio P(s2|Sn, M)/P(s1|Sn, M) is sufficiently larger than 1. We use 
a threshold of 1.5 for our results table.

Appendix C

Simulated habituation and test curves
To better illustrate the outputs of each simulation, Figure C1 shows habituation and test- 

event response curves for the action, reflex, and outcome models (h1
1, h1

2, and h2
1 in 

Appendix A1)

Figure C1. Simulated habituation and test-event response curves for action, reflex, and 
outcome models. Panel 5a illustrates the steady increase in posterior likelihood, corre-
sponding to the observer’s increasing familiarity with the habituation event. This occurs 
across all models. Panel 5b illustrates the posterior likelihood of both test events, given 
n observations of the habituation event. If the observer starts with an action model, the 
posterior likelihood of ‘new action’ drops significantly as habituation proceeds, while the 
posterior likelihood of ‘new goal’ increases significantly. Thus, as n increases, an action- 
model observer develops a strong preference for ‘new action’. On the bottom of Panel 
5b, the response graph illustrates that an outcome-observer would instead develop 
a strong preference for ‘new goal’, while the middle panel demonstrates that a reflex- 
observer would develop no preference for either event, both events being equally 
unexpected.
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Notes

1. Throughout this paper, we use ‘fixation’ to refer to ‘visual fixation’ exclusively. 
Similarly, we use ‘habituation’ to refer to ‘visual habituation’ exclusively.

2. For example, mental models (Johnson-Laird, 1994), inference to the best explanation 
(Douven, 1999), and dual-process accounts of inductive and deductive reasoning 
(Sloman, 1996).

3. In a more general setting, we would call this the experimenter’s ‘hypothesis space’. 
However, this term has a more specific meaning in the context of Bayesian observer 
models. To avoid confusion, we use ‘hypothesis space’ to denote the standard 
Bayesian concept, and ‘schema space’ to denote the set of cognitive schema which 
the experiment considers as plausible hypotheses.

4. For example, under a dual-process linking hypothesis, the predicted fixation time 
would be a function of stimulus complexity and a sensitization rate, the latter being 
estimated through some other process.

5. This is the standard Markov property for causal graphical models.
6. If n = 0, this simulates the observer acting on prior expectations alone.
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